cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A168532 Triangle read by rows, A054525 * A168021.

Original entry on oeis.org

1, 1, 1, 2, 0, 1, 3, 1, 0, 1, 6, 0, 0, 0, 1, 7, 2, 1, 0, 0, 1, 14, 0, 0, 0, 0, 0, 1, 17, 3, 0, 1, 0, 0, 0, 1, 27, 0, 2, 0, 0, 0, 0, 0, 1, 34, 6, 0, 0, 1, 0, 0, 0, 0, 1, 55, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 63, 7, 3, 2, 0, 1, 0, 0, 0, 0, 0, 1, 100, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1
Offset: 1

Views

Author

Gary W. Adamson, Nov 28 2009

Keywords

Comments

Row sums = A000041 starting (1, 2, 3, 5, 7, 11, 15, ...).
T(n,k) is the number of partitions of n into parts with GCD = k. - Alois P. Heinz, Jun 06 2013

Examples

			First few rows of the triangle:
    1;
    1,  1;
    2,  0, 1;
    3,  1, 0, 1;
    6,  0, 0, 0, 1;
    7,  2, 1, 0, 0, 1;
   14,  0, 0, 0, 0, 0, 1;
   17,  3, 0, 1, 0, 0, 0, 1;
   27,  0, 2, 0, 0, 0, 0, 0, 1;
   34,  6, 0, 0, 1, 0, 0, 0, 0, 1;
   55,  0, 0, 0, 0, 0, 0, 0, 0, 0, 1;
   63,  7, 3, 2, 0, 1, 0, 0, 0, 0, 0, 1;
  100,  0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1;
  119, 14, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1;
  167,  0, 6, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1;
  209, 17, 0, 3, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1;
  296,  0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1;
  ...
		

Crossrefs

Cf. A256067 (the same for LCM).

Programs

  • Maple
    b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i=1, x,
          b(n, i-1)+(p-> add(coeff(p, x, t)*x^igcd(t, i),
          t=0..degree(p)))(add(b(n-i*j, i-1), j=1..n/i))))
        end:
    T:= n-> (p-> seq(coeff(p, x, i), i=1..n))(b(n$2)):
    seq(T(n), n=1..17);  # Alois P. Heinz, Mar 29 2015
  • Mathematica
    b[n_, i_] := b[n, i] = If[n==0, 1, If[i==1, x, b[n, i-1] + Function[{p}, Sum[Coefficient[p, x, t]*x^GCD[t, i], {t, 0, Exponent[p, x]}]][Sum[b[n - i*j, i-1], {j, 1, n/i}]]]]; T[n_] := Function[{p}, Table[Coefficient[p, x, i], {i, 1, n}]][b[n, n]]; Table[T[n], {n, 1, 17}] // Flatten (* Jean-François Alcover, Jan 08 2016, after Alois P. Heinz *)

Formula

Mobius transform of triangle A168021 = an infinite lower triangular matrix with aerated variants of A000837 in each column; where A000837 = the Mobius transform of the partition numbers, A000041.

Extensions

Corrected and extended by Alois P. Heinz, Jun 06 2013