A168542 Number of trees that have a maximum 'n'.
1, 1, 1, 2, 2, 4, 5, 10, 10, 20, 25, 50, 52, 104, 130, 260, 260, 520, 650, 1300, 1352, 2704, 3380, 6760, 6770, 13540, 16925, 33850, 35204, 70408, 88010, 176020, 176020, 352040, 440050, 880100, 915304, 1830608, 2288260, 4576520, 4583290, 9166580, 11458225
Offset: 0
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..5654
Crossrefs
Partial differences of A091980. - Alois P. Heinz, Jul 12 2019
Programs
-
Maple
b:= proc(n) option remember; `if`(n=0, 1, (g-> (f-> 1+b(f)*b(n-1-f))(min(g-1, n-g/2)))(2^ilog2(n))) end: a:= n-> b(n)-`if`(n=0, 0, b(n-1)): seq(a(n), n=0..45); # Alois P. Heinz, Jul 12 2019
-
Mathematica
a[ n_] := If[ n < 3, Boole[n > 0], With[{m = BitLength[Quotient[n, 3]] - 1}, Nest[#^2 + 1 &, 2, m] a[n - 2 2^m]]]; (* Michael Somos, Dec 20 2018 *)
-
PARI
{a(n) = if( n<3, n>0, my(m = #binary(n\3)-1, t = 2); for(i=1, m, t = t^2+1); t*a(n - 2*2^m))}; /* Michael Somos, Dec 20 2018 */
Formula
a(1) = a(2) = 1, a(3*2^m + k) = A003095(m+2) * a(n - 2*2^m) where 0 <= k < 3*2^m. - Michael Somos, Dec 20 2018
a(n) = Sum_{k=0..n} (A309049(n,k)-A309049(n-1,k)) for n > 0, a(0) = 1. - Alois P. Heinz, Jul 12 2019
Extensions
a(0)=1 prepended by Alois P. Heinz, Jul 12 2019
Comments