A168545 Primes p such that the concatenation of p and 29 is a square number: "p 29" = N = m^2.
5, 7, 53, 59, 151, 313, 1069, 1789, 1823, 2237, 2777, 3329, 3881, 3931, 4583, 5227, 6037, 7621, 7691, 9467, 12611, 13759, 14957, 17609, 20249, 28123, 35081, 36979, 49417, 56311, 56501, 63857, 69011, 71663, 79693, 85439, 94433, 114041, 117443
Offset: 1
Examples
(1) 529 = 23^2, 5 = prime(3) = a(1); (2) 729 = 27^2, 7 = prime(4) = a(2); (3) 5329 = 73^2, 53 = prime(16) = a(3); (4) 16129 = 127^2, but 161 = 7 * 23 is composite => 161 is not a term of the sequence; (5) 31329 = 177^2, 313 = prime(65) gives a(6) = 313.
References
- Andreas Bartholome, Josef Rung, Hans Kern: Zahlentheorie für Einsteiger, Vieweg & Sohn 1995
- Leonard E. Dickson: History of the Theory of numbers, vol. I, Dover Publications 2005
- Theo Kempermann, Zahlentheoretische Kostproben, Harri Deutsch, 2. aktualisierte Auflage 2005
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
Crossrefs
Programs
-
Maple
A:= NULL: count:= 0: for m from 0 while count < 100 do for q in [23,27,73,77] do r:= floor((100*m + q)^2/100); if isprime(r) then A:= A, r; count:= count+1; fi od od: A; # Robert Israel, Nov 23 2015
-
PARI
isok(n) = isprime(n) && issquare(100*n + 29) \\ Michel Marcus, Jul 22 2013; corrected Jun 13 2022
Comments