cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A168545 Primes p such that the concatenation of p and 29 is a square number: "p 29" = N = m^2.

Original entry on oeis.org

5, 7, 53, 59, 151, 313, 1069, 1789, 1823, 2237, 2777, 3329, 3881, 3931, 4583, 5227, 6037, 7621, 7691, 9467, 12611, 13759, 14957, 17609, 20249, 28123, 35081, 36979, 49417, 56311, 56501, 63857, 69011, 71663, 79693, 85439, 94433, 114041, 117443
Offset: 1

Views

Author

Ulrich Krug (leuchtfeuer37(AT)gmx.de), Nov 29 2009

Keywords

Comments

(1) It is conjectured that the sequence is infinite.
(2) 29 = prime(10) is the smallest prime with the property that its digits can be the final two digits of a square.
(3) The possible final digits of m are necessarily e = 23, 27, 73 or 77.
(4) Elementary proof of (3) with (10^2 * k + e)^2 = "n 29" for these four values of e only.
(5) Note 23 + 77 = 27 + 73 = 10^2.

Examples

			(1) 529 = 23^2, 5 = prime(3) = a(1);
(2) 729 = 27^2, 7 = prime(4) = a(2);
(3) 5329 = 73^2, 53 = prime(16) = a(3);
(4) 16129 = 127^2, but 161 = 7 * 23 is composite => 161 is not a term of the sequence;
(5) 31329 = 177^2, 313 = prime(65) gives a(6) = 313.
		

References

  • Andreas Bartholome, Josef Rung, Hans Kern: Zahlentheorie für Einsteiger, Vieweg & Sohn 1995
  • Leonard E. Dickson: History of the Theory of numbers, vol. I, Dover Publications 2005
  • Theo Kempermann, Zahlentheoretische Kostproben, Harri Deutsch, 2. aktualisierte Auflage 2005

Crossrefs

Cf. A000040 (the prime numbers).
Cf. A167535 (concatenation of two square numbers which give a prime).
Cf. A158896 (primes whose squares are a concatenation of 2 with some prime).

Programs

  • Maple
    A:= NULL:
    count:= 0:
    for m from 0 while count < 100 do
      for q in [23,27,73,77] do
        r:= floor((100*m + q)^2/100);
        if isprime(r) then A:= A, r; count:= count+1; fi
    od od:
    A; # Robert Israel, Nov 23 2015
  • PARI
    isok(n) = isprime(n) && issquare(100*n + 29) \\ Michel Marcus, Jul 22 2013; corrected Jun 13 2022