cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A168546 Decimal expansion of the argument z in (0,Pi/2) for which the function log(cos(sin(x)))/log(sin(cos(x))) possesses the maximum in (0,Pi/2).

Original entry on oeis.org

8, 4, 7, 0, 2, 5, 2, 6, 4, 0, 8, 1, 2, 5, 3, 3, 2, 2, 8, 1, 9, 7, 7, 5, 1, 1, 0, 2, 1, 6, 8, 9, 4, 2, 4, 3, 2, 4, 7, 1, 5, 2, 5, 0, 7, 4, 2, 9, 1, 8, 6, 5, 4, 2, 3, 7, 9, 6, 2, 1, 7, 1, 6, 8, 1, 7, 8, 1, 8, 9, 1, 2, 7, 3, 5, 9, 9, 4, 0, 4, 4, 3, 0, 7, 3, 4, 4, 9, 9, 3, 7, 6, 4, 0, 5, 8, 5, 2, 0, 3, 5, 4, 1, 5, 8, 4
Offset: 0

Views

Author

Roman Witula, Aug 24 2012

Keywords

Comments

We have max{f(x): x in (0,Pi/2)} = f(z) = A215832 = 0.641019237..., where f(x) = log(cos(sin(x)))/log(sin(cos(x))). See also A215833.

Examples

			= 0.8470252640812533228197751102168942432471525...
		

References

  • R. Witula, D. Jama, E. Hetmaniok, D. Slota, On some inequality of the trigonometric type, Zeszyty Naukowe Politechniki Slaskiej - Matematyka-Fizyka (Science Fascicle of Silesian Technical University - Math.-Phys.), 92 (2010), 83-92.

Crossrefs

Programs

  • Mathematica
    f[x_] := Log[Cos[Sin[x]]] / Log[Sin[Cos[x]]]; x /. FindRoot[f'[x] == 0, {x, 1}, WorkingPrecision -> 130] // RealDigits[#, 10, 126]& // First (* Jean-François Alcover, Feb 11 2013 *)

Extensions

Terms corrected by Jean-François Alcover, Feb 11 2013