cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A168583 The number of ways of partitioning the multiset {1,1,2,3,...,n-1} into exactly three nonempty parts.

Original entry on oeis.org

1, 4, 16, 58, 196, 634, 1996, 6178, 18916, 57514, 174076, 525298, 1582036, 4758394, 14299756, 42948418, 128943556, 387027274, 1161475036, 3485211538, 10457207476, 31374768154, 94130595916, 282404370658, 847238277796, 2541765165034, 7625396158396
Offset: 3

Views

Author

Martin Griffiths, Nov 30 2009

Keywords

Comments

The number of ways of partitioning the multiset {1, 1, 2, 3, ..., n-1} into exactly two, four and five nonempty parts are given in A083329, A168584 and A168585, respectively.

Examples

			The partitions of {1,1,2,3} into exactly three nonempty parts are {{1},{1},{2,3}}, {{1},{2},{1,3}}, {{1},{3},{1,2}} and {{2},{3},{1,1}}.
		

Crossrefs

Programs

  • Magma
    [3^(n-2) - 3*2^(n-3) + 1: n in [3..35]]; // Vincenzo Librandi, Dec 12 2015
  • Maple
    A168583:=n->3^(n-2)-3*2^(n-3)+1: seq(A168583(n), n=3..40); # Wesley Ivan Hurt, Dec 12 2015
  • Mathematica
    f1[n_] := 3^(n - 2) - 3 2^(n - 3) + 1; Table[f1[n], {n, 3, 25}]

Formula

For a>=3, a(n) = 3^(n-2) - 3*2^(n-3) + 1.
E.g.f.: 3*e^(3x) - 3*e^(2x) + e^x (shifted).
O.g.f.: x^3*(1-2x+3x^2)/((1-x)*(1-2x)*(1-3x)).
a(n) = A126644(n-3). - R. J. Mathar, Dec 11 2009