A168583 The number of ways of partitioning the multiset {1,1,2,3,...,n-1} into exactly three nonempty parts.
1, 4, 16, 58, 196, 634, 1996, 6178, 18916, 57514, 174076, 525298, 1582036, 4758394, 14299756, 42948418, 128943556, 387027274, 1161475036, 3485211538, 10457207476, 31374768154, 94130595916, 282404370658, 847238277796, 2541765165034, 7625396158396
Offset: 3
Examples
The partitions of {1,1,2,3} into exactly three nonempty parts are {{1},{1},{2,3}}, {{1},{2},{1,3}}, {{1},{3},{1,2}} and {{2},{3},{1,1}}.
Links
- M. Griffiths, I. Mezo, A generalization of Stirling Numbers of the Second Kind via a special multiset, JIS 13 (2010) #10.2.5.
- Index entries for linear recurrences with constant coefficients, signature (6,-11,6).
Programs
-
Magma
[3^(n-2) - 3*2^(n-3) + 1: n in [3..35]]; // Vincenzo Librandi, Dec 12 2015
-
Maple
A168583:=n->3^(n-2)-3*2^(n-3)+1: seq(A168583(n), n=3..40); # Wesley Ivan Hurt, Dec 12 2015
-
Mathematica
f1[n_] := 3^(n - 2) - 3 2^(n - 3) + 1; Table[f1[n], {n, 3, 25}]
Formula
For a>=3, a(n) = 3^(n-2) - 3*2^(n-3) + 1.
E.g.f.: 3*e^(3x) - 3*e^(2x) + e^x (shifted).
O.g.f.: x^3*(1-2x+3x^2)/((1-x)*(1-2x)*(1-3x)).
a(n) = A126644(n-3). - R. J. Mathar, Dec 11 2009
Comments