cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A168584 Number of ways of partitioning the multiset {1,1,2,3,...,n-1} into exactly four nonempty parts.

Original entry on oeis.org

1, 7, 41, 215, 1041, 4767, 21001, 90055, 378881, 1572527, 6463161, 26375895, 107081521, 433076287, 1746588521, 7029269735, 28245956961, 113370724047, 454644109081, 1822061123575, 7298700653201, 29226175283807
Offset: 4

Views

Author

Martin Griffiths, Nov 30 2009

Keywords

Comments

The number of ways of partitioning the multiset {1, 1, 2, 3, ..., n-1} into exactly two, three and five nonempty parts are given in A083329, A168583 and A168585, respectively.

Crossrefs

Programs

  • Magma
    [(5*4^(n-3)-3^(n-1)+3*2^(n-2)-2)/3: n in [4..30]]; // Wesley Ivan Hurt, Dec 12 2015
  • Maple
    A168584:=n->(5*4^(n-3)-3^(n-1)+3*2^(n-2)-2)/3: seq(A168584(n), n=4..30); # Wesley Ivan Hurt, Dec 12 2015
  • Mathematica
    f2[n_] := 1/3 (5 4^(n - 3) - 3^(n - 1) + 3 2^(n - 2) - 2); Table[f2[n], {n, 4, 25}]
    LinearRecurrence[{10,-35,50,-24},{1,7,41,215},30] (* Harvey P. Dale, Sep 15 2020 *)

Formula

For a>=4, a(n) = (5*4^(n-3) - 3^(n-1) + 3*2^(n-2) - 2)/3.
The shifted exponential generating function is (20e^(4x) - 27e^(3x) + 12e^(2x) - 2e^x)/3.
The ordinary generating function is x^4(1-3x+6x^2)/((1-x)(1-2x)(1-3x)(1-4x)).