cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A168598 G.f.: exp( Sum_{n>=1} A002426(n)^2*x^n/n ), where A002426(n) is the central trinomial coefficients.

Original entry on oeis.org

1, 1, 5, 21, 119, 703, 4515, 30227, 210274, 1503930, 11008198, 82099262, 622013122, 4775754930, 37089503826, 290914775618, 2301706690657, 18351027768401, 147308337621061, 1189704370416949, 9661185599013209, 78844977025403657
Offset: 0

Views

Author

Paul D. Hanna, Dec 01 2009

Keywords

Comments

Compare to: exp( Sum_{n>=1} A002426(n)*x^n/n ) = g.f. of the Motzkin numbers (A001006).

Examples

			G.f.: A(x) = 1 + x + 5*x^2 + 21*x^3 + 119*x^4 + 703*x^5 +...
log(A(x)) = x + 9*x^2/2 + 49*x^3/3 + 361*x^4/4 + 2601*x^5/5 + 19881*x^6/6 +...+ A002426(n)^2*x^n/n +...
		

Crossrefs

Programs

  • Magma
    m:=30;
    A002426:= func< n | (&+[ Binomial(n, k)*Binomial(k, n-k): k in [0..n]]) >;
    R:=PowerSeriesRing(Rationals(), m);
    Coefficients(R!( Exp( (&+[A002426(j)^2*x^j/j: j in [1..m+2]]) ) )); // G. C. Greubel, Mar 16 2021
    
  • Mathematica
    A002426[n_]:= GegenbauerC[n, -n, -1/2];
    With[{m=30}, CoefficientList[Series[Exp[Sum[A002426[j]^2*x^j/j, {j, m+2}]], {x, 0, m}], x]] (* G. C. Greubel, Mar 16 2021 *)
  • PARI
    {a(n)=if(n==0,1,polcoeff(exp(sum(m=1,n,polcoeff((1+x+x^2)^m,m)^2*x^m/m)+x*O(x^n)),n))}
    
  • Sage
    m=30
    def A002426(n): return sum( binomial(n, k)*binomial(k, n-k) for k in (0..n) )
    def A168598_list(prec):
        P. = PowerSeriesRing(QQ, prec)
        return P( exp( sum( A002426(j)^2*x^j/j for j in [1..m+2])) ).list()
    A168598_list(m) # G. C. Greubel, Mar 16 2021