A168599 G.f.: exp( Sum_{n>=1} A002426(n)^n * x^n/n ), where A002426(n) is the central trinomial coefficients.
1, 1, 5, 119, 32707, 69038213, 1309743837515, 206848589180297555, 281897548265847120670891, 3287603007740009094151486257065, 330891681467139744269091005122077348971
Offset: 0
Keywords
Examples
G.f.: A(x) = 1 + x + 5*x^2 + 119*x^3 + 32707*x^4 +... log(A(x)) = x + 9*x^2/2 + 343*x^3/3 + 130321*x^4/4 +...+ A002426(n)^n*x^n/n +...
Links
- G. C. Greubel, Table of n, a(n) for n = 0..45
Programs
-
Magma
m:=30; A002426:= func< n | (&+[ Binomial(n, k)*Binomial(k, n-k): k in [0..n]]) >; R
:=PowerSeriesRing(Rationals(), m); Coefficients(R!( Exp( (&+[A002426(j)^j*x^j/j: j in [1..m+2]]) ) )); // G. C. Greubel, Mar 16 2021 -
Maple
m:=30; A002426:= n-> add( binomial(n, k)*binomial(k, n-k), k=0..n ); S := series( exp(add(A002426(j)^j*x^j/j, j = 1..m+2)), x, m+1); seq(coeff(S, x, j), j = 0..m); # G. C. Greubel, Mar 16 2021
-
Mathematica
A002426[n_] := GegenbauerC[n, -n, -1/2]; With[{m=30}, CoefficientList[Series[Exp[Sum[A002426[j]^j*x^j/j, {j, m+2}]], {x, 0, m}], x]] (* G. C. Greubel, Mar 16 2021 *)
-
PARI
{a(n)=if(n==0,1,polcoeff(exp(sum(m=1,n,polcoeff((1+x+x^2)^m,m)^m*x^m/m)+x*O(x^n)),n))}
-
Sage
m=30 def A002426(n): return sum( binomial(n, k)*binomial(k, n-k) for k in (0..n) ) def A168598_list(prec): P.
= PowerSeriesRing(QQ, prec) return P( exp( sum( A002426(j)^j*x^j/j for j in [1..m+2])) ).list() A168598_list(m) # G. C. Greubel, Mar 16 2021
Comments