A168605 Number of ways of partitioning the multiset {1,1,1,2,3,...,n-2} into exactly three nonempty parts.
1, 2, 8, 30, 104, 342, 1088, 3390, 10424, 31782, 96368, 291150, 877544, 2640822, 7938848, 23849310, 71613464, 214971462, 645176528, 1936053870, 5809210184, 17429727702, 52293377408, 156888520830, 470682339704, 1412080573542
Offset: 3
Links
- G. C. Greubel, Table of n, a(n) for n = 3..1000
- M. Griffiths and I. Mezo, A generalization of Stirling Numbers of the Second Kind via a special multiset, JIS 13 (2010) #10.2.5.
- Index entries for linear recurrences with constant coefficients, signature (6,-11,6).
Programs
-
Magma
[1] cat [(5*3^(n-3) -3*2^(n-2) +3)/3: n in [4..30]]; // G. C. Greubel, Feb 07 2021
-
Mathematica
a[n_]:= If[n==3, 1, (5*3^(n-3) - 3*2^(n-2) + 3)/3]; Table[a[n], {n, 3, 30}]
-
Sage
[1]+[(5*3^(n-3) -3*2^(n-2) +3)/3 for n in (4..30)] # G. C. Greubel, Feb 07 2021
Formula
a(n) = (5*3^(n-3) - 3*2^(n-2) + 3)/3 for n >= 4, with a(3) = 1.
The shifted e.g.f. is (5*exp(3*x) - 6*exp(2*x) + 3*exp(x) + 1)/3.
G.f.: x^3*(1 -4*x +7*x^2 -2*x^3)/((1-x)*(1-2*x)*(1-3*x)).
Extensions
Last element of the multiset in the definition corrected by Martin Griffiths, Dec 02 2009
Comments