cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A168604 a(n) = 2^(n-2) - 1.

Original entry on oeis.org

1, 3, 7, 15, 31, 63, 127, 255, 511, 1023, 2047, 4095, 8191, 16383, 32767, 65535, 131071, 262143, 524287, 1048575, 2097151, 4194303, 8388607, 16777215, 33554431, 67108863, 134217727, 268435455, 536870911, 1073741823, 2147483647, 4294967295, 8589934591
Offset: 3

Views

Author

Martin Griffiths, Dec 01 2009

Keywords

Comments

Number of ways of partitioning the multiset {1,1,1,2,3,...,n-2} into exactly two nonempty parts.
An elephant sequence, see A175655. For the central square six A[5] vectors, with decimal values between 26 and 176, lead to this sequence. For the corner squares these vectors lead to the companion sequence A000325 (without the first leading 1). - Johannes W. Meijer, Aug 15 2010

Examples

			The partitions of {1,1,1,2,3} into exactly two nonempty parts are {{1},{1,1,2,3}}, {{2},{1,1,1,3}}, {{3},{1,1,1,2}}, {{1,1},{1,2,3}}, {{1,2},{1,1,3}}, {{1,3},{1,1,2}} and {{2,3},{1,1,1}}.
		

Crossrefs

The number of ways of partitioning the multiset {1, 1, 1, 2, 3, ..., n-1} into exactly three and four nonempty parts are given in A168605 and A168606, respectively.

Programs

Formula

E.g.f.: 2*exp(2*x)-exp(x).
a(n) = A000225(n-2).
G.f.: x^3/((1-x)*(1-2*x))
a(n) = A126646(n-3). - R. J. Mathar, Dec 11 2009
a(n) = 3*a(n-1) - 2*a(n-2). - Arkadiusz Wesolowski, Jun 14 2013
a(n) = A000918(n-2) + 1. - Miquel Cerda, Aug 09 2016

A291117 Triangle read by rows: T(n,k) = number of ways of partitioning the (n+2)-element multiset {1,1,1,2,3,...,n} into exactly k nonempty parts, n >= 0 and 1 <= k <= n + 2.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 3, 2, 1, 1, 7, 8, 4, 1, 1, 15, 30, 20, 7, 1, 1, 31, 104, 102, 46, 11, 1, 1, 63, 342, 496, 300, 96, 16, 1, 1, 127, 1088, 2294, 1891, 786, 183, 22, 1, 1, 255, 3390, 10200, 11417, 6167, 1862, 323, 29, 1, 1, 511, 10424, 44062, 66256, 46417, 17801, 4040, 535, 37, 1, 1, 1023, 31782, 186416, 372190, 336022, 162372, 46425, 8127, 841, 46, 1
Offset: 0

Views

Author

Marko Riedel, Aug 17 2017

Keywords

Examples

			Triangle begins:
  1,   1;
  1,   1,   1;
  1,   3,   2,   1;
  1,   7,   8,   4,   1;
  1,  15,  30,  20,   7,  1;
  1,  31, 104, 102,  46, 11,  1;
  1,  63, 342, 496, 300, 96, 16, 1;
		

Crossrefs

Formula

Formula including proof is at web link.

A168606 The number of ways of partitioning the multiset {1,1,1,2,3,...,n-2} into exactly four nonempty parts.

Original entry on oeis.org

1, 4, 20, 102, 496, 2294, 10200, 44062, 186416, 776934, 3203080, 13101422, 53279136, 215749174, 870919160, 3507493182, 14101520656, 56620923014, 227128606440, 910449955342, 3647607982976, 14607859562454, 58483727432920
Offset: 4

Views

Author

Martin Griffiths, Dec 01 2009

Keywords

Comments

The number of ways of partitioning the multiset {1, 1, 1, 2, 3, ..., n-1} into exactly two and three nonempty parts are given in A168604 and A168605 respectively.

Crossrefs

Programs

  • Magma
    [(10*4^(n-4) -5*3^(n-3) +9*2^(n-4) -1)/3: n in [4..30]]; // G. C. Greubel, Feb 07 2021
  • Mathematica
    a[n_]:= (10*4^(n-4) - 5*3^(n-3) + 9*2^(n-4) - 1)/3; Table[a[n], {n, 4, 30}]
  • Sage
    [(10*4^(n-4) -5*3^(n-3) +9*2^(n-4) -1)/3 for n in (4..30)] # G. C. Greubel, Feb 07 2021
    

Formula

a(n) = (10*4^(n-4) - 5*3^(n-3) + 9*2^(n-4) - 1)/3.
The shifted e.g.f. is (10*exp(4*x) - 15*exp(3*x) + 9*exp(2*x) - exp(x))/3.
G.f.: x^4*(1 -6*x +15*x^2 -8*x^3)/((1-x)*(1-2*x)*(1-3*x)*(1-4*x)).

Extensions

Last element of the multiset in the definition corrected by Martin Griffiths, Dec 02 2009
Showing 1-3 of 3 results.