A168621 Triangle read by rows: T(n,0) = T(n,n) = 1 for n >= 0, T(n,k) = ((n - 1)! + 1)*binomial(n, k) for 1 <= k <= n - 1, n >= 2.
1, 1, 1, 1, 4, 1, 1, 9, 9, 1, 1, 28, 42, 28, 1, 1, 125, 250, 250, 125, 1, 1, 726, 1815, 2420, 1815, 726, 1, 1, 5047, 15141, 25235, 25235, 15141, 5047, 1, 1, 40328, 141148, 282296, 352870, 282296, 141148, 40328, 1, 1, 362889, 1451556, 3386964, 5080446, 5080446, 3386964, 1451556, 362889, 1
Offset: 0
Examples
Triangle begins: 1; 1, 1; 1, 4, 1; 1, 9, 9, 1; 1, 28, 42, 28, 1; 1, 125, 250, 250, 125, 1; 1, 726, 1815, 2420, 1815, 726, 1; 1, 5047, 15141, 25235, 25235, 15141, 5047, 1; 1, 40328, 141148, 282296, 352870, 282296, 141148, 40328, 1; ...
Programs
-
Mathematica
p[x_, n_] := If[n == 0, 1, (x + 1)^n + (n - 1)!*((x + 1)^n - x^n - 1)]; Table[CoefficientList[p[x, n], x], {n, 0, 12}] // Flatten (* Franck Maminirina Ramaharo, Dec 22 2018 *)
-
Maxima
T(n, k) := if k = 0 or k = n then 1 else ((n - 1)! + 1)*binomial(n, k)$ create_list(T(n, k), n, 0, 12, k, 0, n); /* Franck Maminirina Ramaharo, Dec 22 2018 */
Formula
From Franck Maminirina Ramaharo, Dec 22 2018: (Start)
E.g.f.: exp((1 + x)*y) + log((1 - y)*(1 - x*y)/(1 - (1 + x)*y)). (End)
Extensions
Edited by Franck Maminirina Ramaharo, Dec 22 2018 (previous definition and examples were the same as A168620, but with different entries, as pointed out by R. J. Mathar, Oct 21 2012)
Comments