cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A168623 Triangle read by rows: T(n, k) = [x^k]( 9*(1+x)^n - 8*(1 + x^n) ), with T(0, 0) = 1.

Original entry on oeis.org

1, 1, 1, 1, 18, 1, 1, 27, 27, 1, 1, 36, 54, 36, 1, 1, 45, 90, 90, 45, 1, 1, 54, 135, 180, 135, 54, 1, 1, 63, 189, 315, 315, 189, 63, 1, 1, 72, 252, 504, 630, 504, 252, 72, 1, 1, 81, 324, 756, 1134, 1134, 756, 324, 81, 1, 1, 90, 405, 1080, 1890, 2268, 1890, 1080, 405, 90, 1
Offset: 0

Views

Author

Roger L. Bagula and Gary W. Adamson, Dec 01 2009

Keywords

Examples

			Triangle begins as:
  1;
  1,  1;
  1, 18,   1;
  1, 27,  27,    1;
  1, 36,  54,   36,    1;
  1, 45,  90,   90,   45,    1;
  1, 54, 135,  180,  135,   54,    1;
  1, 63, 189,  315,  315,  189,   63,    1;
  1, 72, 252,  504,  630,  504,  252,   72,   1;
  1, 81, 324,  756, 1134, 1134,  756,  324,  81,  1;
  1, 90, 405, 1080, 1890, 2268, 1890, 1080, 405, 90, 1;
		

Crossrefs

Programs

  • Magma
    A168623:= func< n,k | k eq 0 or k eq n select 1 else 9*Binomial(n,k) >;
    [A168623(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Apr 09 2025
    
  • Mathematica
    (* First program *)
    p[x_, n_]:= With[{m=4}, If[n==0, 1, (2*m+1)(1+x)^n - 2*m*(1+x^n)]];
    Table[CoefficientList[p[x,n], x], {n,0,10}]//Flatten
    (* Second program *)
    A168623[n_, k_]:= If[k==0 || k==n, 1, 9*Binomial[n,k]];
    Table[A168623[n,k], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Apr 09 2025 *)
  • SageMath
    def A168623(n,k):
        if (k==0 or k==n): return 1
        else: return 9*binomial(n,k)
    print(flatten([[A168623(n,k) for k in range(n+1)] for n in range(13)])) # G. C. Greubel, Apr 09 2025

Formula

From G. C. Greubel, Apr 09 2025: (Start)
T(n, k) = binomial(n,k)*( [k=0] + 9*[0 < k < n] + [k=n] ).
T(n, n-k) = T(n, k).
Sum_{k=0..n} T(n, k) = 9*2^n - 16 + 8*[n=0].
Sum_{k=0..n} (-1)^k*T(n, k) = -8*(1 + (-1)^n) + 17*[n=0].
Sum_{k=0..floor(n/2)} T(n-k, k) = 9*A000045(n+1) - 4*(3 + (-1)^n) + 8*[n=0]. (End)

Extensions

Keyword:tabl and row sum formula added - The Assoc. Editors of the OEIS, Dec 05 2009