A168625 Triangle T(n,k) = 8*binomial(n,k) - 7 with columns 0 <= k <= n.
1, 1, 1, 1, 9, 1, 1, 17, 17, 1, 1, 25, 41, 25, 1, 1, 33, 73, 73, 33, 1, 1, 41, 113, 153, 113, 41, 1, 1, 49, 161, 273, 273, 161, 49, 1, 1, 57, 217, 441, 553, 441, 217, 57, 1, 1, 65, 281, 665, 1001, 1001, 665, 281, 65, 1, 1, 73, 353, 953, 1673, 2009, 1673, 953, 353, 73, 1
Offset: 0
Examples
Triangle begins as: 1; 1, 1; 1, 9, 1; 1, 17, 17, 1; 1, 25, 41, 25, 1; 1, 33, 73, 73, 33, 1; 1, 41, 113, 153, 113, 41, 1; 1, 49, 161, 273, 273, 161, 49, 1; 1, 57, 217, 441, 553, 441, 217, 57, 1; 1, 65, 281, 665, 1001, 1001, 665, 281, 65, 1; 1, 73, 353, 953, 1673, 2009, 1673, 953, 353, 73, 1;
Links
- G. C. Greubel, Rows n = 0..100 of triangle, flattened
Crossrefs
Programs
-
Magma
[8*Binomial(n, k) -7: k in [0..n], n in [0..10]]; // G. C. Greubel, Mar 12 2020
-
Maple
A168625:= (n,k) -> 8*binomial(n, k) -7; seq(seq(A168625(n, k), k = 0..n), n = 0.. 10); # G. C. Greubel, Mar 12 2020
-
Mathematica
m = 8; p[x_, n_]:= FullSimplify[ExpandAll[m*(x+1)^n -(m-1)(x^(n+1) -1)/(x-1)]]; Table[CoefficientList[p[x, n], x], {n,0,10}]//Flatten Table[8*Binomial[n, k] -7, {n,0,10}, {k,0,n}]//Flatten (* G. C. Greubel, Mar 12 2020 *)
-
Sage
[[8*binomial(n, k) -7 for k in (0..n)] for n in (0..10)] # G. C. Greubel, Mar 12 2020
Formula
T(n,k) = [x^k] ( 8*(x+1)^n-7*Sum_{s=0..n} x^s ) = 8*A007318(n,k) - 7. - R. J. Mathar, Sep 02 2011
Extensions
Definition simplified by R. J. Mathar, Sep 02 2011
Comments