A168639 Expansion of x*(1 + x^2 - x^3) / ( (1-x)*(1-x-x^4) ).
0, 1, 2, 4, 5, 7, 10, 15, 21, 29, 40, 56, 78, 108, 149, 206, 285, 394, 544, 751, 1037, 1432, 1977, 2729, 3767, 5200, 7178, 9908, 13676, 18877, 26056, 35965, 49642, 68520, 94577, 130543, 180186, 248707, 343285, 473829, 654016, 902724, 1246010, 1719840, 2373857, 3276582
Offset: 0
References
- R. Pallu de la Barrière, Optimal Control Theory, Dover Publications, New York, 1967, pages 339-344.
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (2,-1,0,1,-1).
Programs
-
Magma
R
:=PowerSeriesRing(Integers(), 60); [0] cat Coefficients(R!( x*(1+x^2-x^3)/((1-x)*(1-x-x^4)) )); // G. C. Greubel, Apr 20 2025 -
Mathematica
LinearRecurrence[{2,-1,0,1,-1}, {0,1,2,4,5}, 60] (* G. C. Greubel, Jul 28 2016 *)
-
PARI
a(n)=([0,1,0,0,0; 0,0,1,0,0; 0,0,0,1,0; 0,0,0,0,1; -1,1,0,-1,2]^n*[0;1;2;4;5])[1,1] \\ Charles R Greathouse IV, Jul 29 2016
-
SageMath
def A168639_list(prec): P.
= PowerSeriesRing(ZZ, prec) return P( x*(1+x^2-x^3)/((1-x)*(1-x-x^4)) ).list() print(A168639_list(60)) # G. C. Greubel, Apr 20 2025
Formula
Lim_{n -> oo} a(n+1)/a(n) = 1.38027756909761411567330169182..., see A086106.
a(n) = 2*a(n-1) -a(n-2) +a(n-4) -a(n-5). - R. J. Mathar, Dec 02 2009