cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A168642 a(n) = (8*2^n + (-1)^n)/3 for n > 0; a(0) = 1.

Original entry on oeis.org

1, 5, 11, 21, 43, 85, 171, 341, 683, 1365, 2731, 5461, 10923, 21845, 43691, 87381, 174763, 349525, 699051, 1398101, 2796203, 5592405, 11184811, 22369621, 44739243, 89478485, 178956971, 357913941, 715827883, 1431655765, 2863311531
Offset: 0

Views

Author

Klaus Brockhaus, Dec 01 2009

Keywords

Comments

First differences of A085278.

Crossrefs

Cf. A001045 (Jacobsthal sequence), A085278 (expansion of (1+2*x)^2/((1-2*x)*(1-x^2))).

Programs

  • Magma
    [1] cat [ (8*2^n+(-1)^n)/3: n in [1..30] ];
    
  • Mathematica
    Table[(8*2^n +(-1)^n)/3 - 2*Boole[n==0], {n, 0, 40}] (* or *) LinearRecurrence[{1,2}, {1,5,11}, 40] (* G. C. Greubel, Jul 28 2016; Feb 05 2021 *)
  • PARI
    a(n)=([0,1; 2,1]^n*[1;5])[1,1] \\ Charles R Greathouse IV, Jul 29 2016
    
  • Sage
    [1]+[(2^(n+3) +(-1)^n)/3 for n in (1..40)] # G. C. Greubel, Feb 05 2021

Formula

a(n) = A001045(n+3) for n > 0.
a(n) = a(n-1) + 2*a(n-2) for n > 2; a(0) = 1, a(1) = 5, a(2) = 11.
G.f.: (1 + 2*x)^2/((1+x)*(1-2*x)).
E.g.f.: (8*exp(2*x) - 6 + exp(-x))/3. - G. C. Greubel, Jul 28 2016