A168661 a(n) = n^7*(n^4 + 1)/2.
0, 1, 1088, 89667, 2105344, 24453125, 181538496, 989075143, 4296015872, 15692921289, 50005000000, 142665578891, 371522101248, 896111571277, 2024835291584, 4324963359375, 8796227239936, 17136153323153, 32134511149632, 58245576384979, 102400640000000, 175139650815381, 292160397884608
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..10000
- Index entries for linear recurrences with constant coefficients, signature (12,-66,220,-495,792,-924,792,-495,220,-66,12,-1).
Crossrefs
Cf. A168635.
Programs
-
Magma
[n^7*(n^4+1)/2: n in [0..20]]; // Vincenzo Librandi, Aug 28 2011
-
Mathematica
Table[n^7*(n^4 + 1)/2, {n,0,25}] (* G. C. Greubel, Jul 28 2016 *)
-
PARI
a(n)=n^7*(n^4+1)/2 \\ Charles R Greathouse IV, Jul 29 2016
-
SageMath
def A168661(n): return n^3*binomial(n^4+1,2) print([A168661(n) for n in range(31)]) # G. C. Greubel, Mar 24 2025
Formula
From G. C. Greubel, Jul 28 2016: (Start)
G.f.: x*(1 + 1076*x + 76677*x^2 + 1100928*x^3 + 4868154*x^4 + 7864728*x^5 + 4868154*x^6 + 1100928*x^7 + 76677*x^8 + 1076*x^9 + x^10)/(1 - x)^12.
E.g.f.: (1/2)*x*(2 + 1086*x + 28802*x^2 + 146100*x^3 + 246870*x^4 + 179508*x^5 + 63988*x^6 + 11880*x^7 + 1155*x^8 + 55*x^9 + x^10)*exp(x). (End)