cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A168881 Number of reduced words of length n in Coxeter group on 12 generators S_i with relations (S_i)^2 = (S_i S_j)^21 = I.

Original entry on oeis.org

1, 12, 132, 1452, 15972, 175692, 1932612, 21258732, 233846052, 2572306572, 28295372292, 311249095212, 3423740047332, 37661140520652, 414272545727172, 4556998002998892, 50126978032987812, 551396758362865932
Offset: 0

Views

Author

John Cannon and N. J. A. Sloane, Dec 03 2009

Keywords

Comments

The initial terms coincide with those of A003954, although the two sequences are eventually different.
First disagreement at index 21: a(21) = 8072999939190720110346, A003954(21) = 8072999939190720110412. - Klaus Brockhaus, Apr 05 2011
Computed with MAGMA using commands similar to those used to compute A154638.

Crossrefs

Cf. A003954 (G.f.: (1+x)/(1-11*x)).

Programs

  • Magma
    R:=PowerSeriesRing(Integers(), 20); Coefficients(R!( (1+t)*(1-t^21)/(1-11*t+65*t^21-55*t^22) )); // G. C. Greubel, Sep 25 2019
    
  • Maple
    seq(coeff(series((1+t)*(1-t^21)/(1-11*t+65*t^21-55*t^22), t, n+1), t, n), n = 0..20); # G. C. Greubel, Sep 25 2019
  • Mathematica
    CoefficientList[Series[(1+t)*(1-t^21)/(1-11*t+65*t^21-55*t^22), {t, 0, 20}], t] (* G. C. Greubel, Sep 25 2019 *)
    coxG[{21, 55, -10}] (* The coxG program is at A169452 *) (* G. C. Greubel, Sep 25 2019 *)
  • PARI
    my(t='t+O('t^20)); Vec((1+t)*(1-t^21)/(1-11*t+65*t^21-55*t^22)) \\ G. C. Greubel, Sep 25 2019
    
  • Sage
    def A168881_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P((1+t)*(1-t^21)/(1-11*t+65*t^21-55*t^22)).list()
    A168881_list(20) # G. C. Greubel, Sep 25 2019

Formula

G.f.: (t^21 + 2*t^20 + 2*t^19 + 2*t^18 + 2*t^17 + 2*t^16 + 2*t^15 + 2*t^14 + 2*t^13 + 2*t^12 + 2*t^11 + 2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(55*t^21 - 10*t^20 - 10*t^19 - 10*t^18 - 10*t^17 - 10*t^16 - 10*t^15 - 10*t^14 - 10*t^13 - 10*t^12 - 10*t^11 - 10*t^10 - 10*t^9 - 10*t^8 - 10*t^7 - 10*t^6 - 10*t^5 - 10*t^4 - 10*t^3 - 10*t^2 - 10*t + 1).
G.f.: (1+t)*(1-t^21)/(1 -11*t +65*t^21 -55*t^22). - G. C. Greubel, Sep 25 2019