cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A169592 Expansion of 1/((1-x)*(1-x^2-x^4)) + x/(1-3*x^3).

Original entry on oeis.org

1, 2, 2, 2, 7, 4, 7, 16, 12, 12, 47, 20, 33, 114, 54, 54, 331, 88, 143, 872, 232, 232, 2563, 376, 609, 7170, 986, 986, 21279, 1596, 2583, 61632, 4180, 4180, 183911, 6764, 10945, 542386, 17710, 17710, 1622979, 28656, 46367, 4829336, 75024, 75024, 14470299, 121392
Offset: 0

Views

Author

Roger L. Bagula, Dec 02 2009

Keywords

Crossrefs

Cf. A103609.

Programs

  • Magma
    R:=PowerSeriesRing(Integers(), 60);
    Coefficients(R!( 1/((1-x)*(1-x^2-x^4)) +x/(1-3*x^3) )); // G. C. Greubel, Oct 23 2024
    
  • Mathematica
    p[t_]= 1/((1-t)*(1-t^2-t^4)) + t/(1-3*t^3);
    CoefficientList[ Series[p[t], {t, 0, 60}], t]
  • SageMath
    def A169592_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P( 1/((1-x)*(1-x^2-x^4)) +x/(1-3*x^3) ).list()
    A169592_list(60) # G. C. Greubel, Oct 23 2024

Formula

G.f.: (1+x+x^4-x^5+x^6-x^2-4*x^3)/((1-x)*(1-3*x^3)*(1-x^2-x^4)).
a(n) = +a(n-1) +a(n-2) +2*a(n-3) -2*a(n-4) -4*a(n-5) +3*a(n-6) -3*a(n-7) 3*a(n-8).
a(n) = A103609(n+6) - 1 + 3^((n-1)/3) if n == 1 mod 3.
a(n) = A103609(n+6) - 1 if n == 0 or 2 mod 3.

Extensions

Notation adapted to OEIS standards, sequence extended, formulas added by the Assoc. Editors of the OEIS [Dec 05 2009]