A169592 Expansion of 1/((1-x)*(1-x^2-x^4)) + x/(1-3*x^3).
1, 2, 2, 2, 7, 4, 7, 16, 12, 12, 47, 20, 33, 114, 54, 54, 331, 88, 143, 872, 232, 232, 2563, 376, 609, 7170, 986, 986, 21279, 1596, 2583, 61632, 4180, 4180, 183911, 6764, 10945, 542386, 17710, 17710, 1622979, 28656, 46367, 4829336, 75024, 75024, 14470299, 121392
Offset: 0
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Philippe Flajolet and Robert Sedgewick, Analytic Combinatorics, Cambridge Univ. Press, 2009, page 303.
- Index entries for linear recurrences with constant coefficients, signature (1,1,2,-2,-4,3,-3,3).
Crossrefs
Cf. A103609.
Programs
-
Magma
R
:=PowerSeriesRing(Integers(), 60); Coefficients(R!( 1/((1-x)*(1-x^2-x^4)) +x/(1-3*x^3) )); // G. C. Greubel, Oct 23 2024 -
Mathematica
p[t_]= 1/((1-t)*(1-t^2-t^4)) + t/(1-3*t^3); CoefficientList[ Series[p[t], {t, 0, 60}], t]
-
SageMath
def A169592_list(prec): P.
= PowerSeriesRing(ZZ, prec) return P( 1/((1-x)*(1-x^2-x^4)) +x/(1-3*x^3) ).list() A169592_list(60) # G. C. Greubel, Oct 23 2024
Formula
Extensions
Notation adapted to OEIS standards, sequence extended, formulas added by the Assoc. Editors of the OEIS [Dec 05 2009]