cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A169605 Numbers x of the form x = 2*y - 3 = 3*z - 2 where y and z are primes.

Original entry on oeis.org

7, 19, 31, 55, 91, 139, 175, 199, 211, 379, 391, 451, 499, 535, 631, 715, 919, 931, 1039, 1135, 1291, 1315, 1399, 1435, 1639, 1711, 1759, 1819, 1855, 1891, 1939, 2179, 2215, 2359, 2431, 2515, 2575, 2719, 2731, 2899, 2971, 3115, 3271, 3691, 3775, 3955, 4195
Offset: 1

Views

Author

Juri-Stepan Gerasimov, Dec 03 2009

Keywords

Examples

			a(1)=7 because 5*2 - 3 = 3*3 - 2;
a(2)=19 because 11*2 - 3 = 7*3 - 2.
		

Crossrefs

Programs

  • Maple
    isA169605 := proc(x) if type(x+3,'even') then if (x+2) mod 3 = 0 then isprime( (x+3)/2) and isprime((x+2)/3) ; else false ; end if else false; end if; end proc: for x from 1 to 10000 do if isA169605(x) then printf("%d,",x) ; end if; end do: # R. J. Mathar, Jan 27 2010
  • Mathematica
    Select[3Prime[Range[250]]-2,PrimeQ[(3+#)/2]&] (* Harvey P. Dale, May 11 2011 *)
  • Sage
    is_prime_Q = lambda x: x.is_integral() and Integer(x).is_prime()
    A169605 = list(x for x in range(1, 10**4) if is_prime_Q((x+3)/2) and
    is_prime_Q((x+2)/3))
    A169605[:36]
    # D. S. McNeil, Dec 21 2009

Extensions

Corrected and extended by Jim Nastos and D. S. McNeil, Dec 21 2009
A few more terms from R. J. Mathar, Jan 27 2010