A169605 Numbers x of the form x = 2*y - 3 = 3*z - 2 where y and z are primes.
7, 19, 31, 55, 91, 139, 175, 199, 211, 379, 391, 451, 499, 535, 631, 715, 919, 931, 1039, 1135, 1291, 1315, 1399, 1435, 1639, 1711, 1759, 1819, 1855, 1891, 1939, 2179, 2215, 2359, 2431, 2515, 2575, 2719, 2731, 2899, 2971, 3115, 3271, 3691, 3775, 3955, 4195
Offset: 1
Keywords
Examples
a(1)=7 because 5*2 - 3 = 3*3 - 2; a(2)=19 because 11*2 - 3 = 7*3 - 2.
Programs
-
Maple
isA169605 := proc(x) if type(x+3,'even') then if (x+2) mod 3 = 0 then isprime( (x+3)/2) and isprime((x+2)/3) ; else false ; end if else false; end if; end proc: for x from 1 to 10000 do if isA169605(x) then printf("%d,",x) ; end if; end do: # R. J. Mathar, Jan 27 2010
-
Mathematica
Select[3Prime[Range[250]]-2,PrimeQ[(3+#)/2]&] (* Harvey P. Dale, May 11 2011 *)
-
Sage
is_prime_Q = lambda x: x.is_integral() and Integer(x).is_prime() A169605 = list(x for x in range(1, 10**4) if is_prime_Q((x+3)/2) and is_prime_Q((x+2)/3)) A169605[:36] # D. S. McNeil, Dec 21 2009
Extensions
Corrected and extended by Jim Nastos and D. S. McNeil, Dec 21 2009
A few more terms from R. J. Mathar, Jan 27 2010