A169656 Triangle, read by rows, T(n, k) = (-1)^n*(n!/k!)^2*binomial(n-1, k-1).
-1, 4, 1, -36, -18, -1, 576, 432, 48, 1, -14400, -14400, -2400, -100, -1, 518400, 648000, 144000, 9000, 180, 1, -25401600, -38102400, -10584000, -882000, -26460, -294, -1, 1625702400, 2844979200, 948326400, 98784000, 3951360, 65856, 448, 1
Offset: 1
Examples
Triangle begins as: -1; 4, 1; -36, -18, -1; 576, 432, 48, 1; -14400, -14400, -2400, -100, -1; 518400, 648000, 144000, 9000, 180, 1; -25401600, -38102400, -10584000, -882000, -26460, -294, -1;
Links
- G. C. Greubel, Rows n = 1..100 of triangle, flattened
Crossrefs
Cf. A008297.
Programs
-
GAP
F:=Factorial;; Flat(List([1..10], n-> List([1..n], k-> (-1)^n*(F(n)/F(k) )^2*Binomial(n-1, k-1) ))); # G. C. Greubel, Nov 28 2019
-
Magma
F:=Factorial; [(-1)^n*(F(n)/F(k))^2*Binomial(n-1, k-1): k in [1..n], n in [1..10]]; // G. C. Greubel, Nov 28 2019
-
Maple
seq(seq( (-1)^n*(n!/k!)^2*binomial(n-1, k-1), k=1..n), n=1..10); # G. C. Greubel, Nov 28 2019
-
Mathematica
T[n_, k_]:= (-1)^n*(n!/k!)^2*Binomial[n-1, k-1]; Table[T[n, k], {n,10}, {k,n}]//Flatten
-
PARI
T(n,k) = (-1)^n*(n!/k!)^2*binomial(n-1, k-1); \\ G. C. Greubel, Nov 28 2019
-
Sage
f=factorial; [[(-1)^n*(f(n)/f(k))^2*binomial(n-1, k-1) for k in (1..n)] for n in (1..10)] # G. C. Greubel, Nov 28 2019
Formula
T(n, k) = (-1)^n * (n!/k!)^2 * binomial(n-1, k-1).
Extensions
Edited by G. C. Greubel, Nov 28 2019
Comments