cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A169658 Triangle, read by rows, defined by T(n, k) = b(n, k) + b(n, n-k+1) - (b(n,1) + b(n,n)) + 1, where b(n, k) = (-1)^n*(n!/k!)^2 *binomial(n-1, k-1).

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, -96, -96, 1, 1, -98, 9602, -98, 1, 1, 129780, -365400, -365400, 129780, 1, 1, -12701092, 14791142, 23637602, 14791142, -12701092, 1, 1, 1219277248, -677310144, -1522967040, -1522967040, -677310144, 1219277248, 1
Offset: 1

Views

Author

Roger L. Bagula, Apr 05 2010

Keywords

Comments

Row sums are: {1, 2, 4, -190, 9408, -471238, 27817704, -1961999870, 163293385984, -15674630045398, ...}.

Examples

			Triangle begins as:
  1;
  1,         1;
  1,         2,        1;
  1,       -96,      -96,        1;
  1,       -98,     9602,      -98,        1;
  1,    129780,  -365400,  -365400,   129780,         1;
  1, -12701092, 14791142, 23637602, 14791142, -12701092, 1;
		

Crossrefs

Cf. A008297.

Programs

  • Magma
    b:= func< n,k | (-1)^n*(Factorial(n)/Factorial(k))^2*Binomial(n-1, k-1) >;
    [[b(n, k) +b(n, n-k+1) -b(n,1) -b(n,n) +1: k in [1..n]]: n in [1..10]]; // G. C. Greubel, May 20 2019
    
  • Mathematica
    L[n_, m_] = (-1)^n*(n!/m!)^2*Binomial[n-1, m-1];
    t[n_, m_] = L[n, m] + L[n, n-m+1];
    Table[t[n, m] - t[n, 1] + 1, {n, 1, 10}, {m, 1, n}]//Flatten
  • PARI
    b(n, k) = (-1)^n*(n!/k!)^2 *binomial(n-1, k-1);
    t(n, k) = b(n, k) + b(n, n-k+1);
    for(n=1, 10, for(k=1, n, print1(t(n,k) - t(n,1) + 1, ", "))) \\ G. C. Greubel, May 20 2019
    
  • Sage
    def b(n, k): return (-1)^n*factorial(n-k)^2*binomial(n,k)^2*binomial(n-1, k-1)
    def t(n, k): return b(n, k) + b(n, n-k+1)
    [[t(n,k) - t(n,1) + 1 for k in (1..n)] for n in (1..10)] # G. C. Greubel, May 20 2019

Formula

T(n, k) = b(n, k) + b(n, n-k+1) - b(n, n) - b(n, 1) + 1, where b(n, k) = (-1)^n*(n!/m!)^2 *binomial(n-1, k-1), where 1 <= k <= n, n >= 1.

Extensions

Edited by G. C. Greubel, May 20 2019