A074587 Sum of the coefficients of the n-th Moebius polynomial, M(n,x), where M(n,-1) = mu(n), the Moebius function of n.
1, 3, 7, 18, 37, 85, 171, 364, 736, 1513, 3027, 6168, 12337, 24849, 49743, 99872, 199745, 400322, 800645, 1602862, 3205903, 6414837, 12829675, 25665996, 51332030, 102676401, 205353546, 410732134, 821464269, 1642979927, 3285959855
Offset: 1
Examples
a(5) = M(5,1) = 1+9+15+10+2 = 37, since M(5,x) = 1 + 9x +15x^2 +10x^3 + 2x^4.
Links
- T. D. Noe, Table of n, a(n) for n=1..300
Crossrefs
Cf. A074586.
First column of A169659. [From Mats Granvik, Paul D. Hanna, Apr 05 2010]
Programs
-
Mathematica
m[n_, x_] := m[n, x]=1+x*Sum[m[i, x]Floor[n/i], {i, 1, n-1}]; Table[m[n, 1], {n, 1, 40}]
Formula
a(n) = M(n, 1) (see A074586 for definition of M(n, x)). a(n) mod 2 = A008966(n). a(n) is asymptotic to c*2^n with c=1.530191414016549187154362361492633020259512374111... Benoit Cloitre, Dec 04 2002
a(1)=1 a(n)=1+sum(i=1, n-1, floor(n/i)*a(i)). - Benoit Cloitre, Dec 04 2002
Extensions
Cross reference corrected by Mats Granvik, Apr 23 2010
Comments