A169663 Numbers k divisible by the sum of the digits and the sum of the squares of digits of k (in base 10).
1, 10, 20, 50, 100, 110, 111, 120, 133, 200, 210, 240, 315, 360, 372, 400, 420, 480, 500, 550, 630, 803, 1000, 1010, 1011, 1020, 1071, 1100, 1101, 1110, 1134, 1148, 1200, 1300, 1302, 1330, 1344, 1431, 1547, 2000, 2010, 2023, 2040, 2100, 2196, 2200, 2220
Offset: 1
Examples
For k = 2196, 2^2 + 1^2 + 9^2 + 6^2 = 122, 2 + 1 + 9 + 6 = 18, and 2196 = 18*122 so it is divisible by both 18 and 122.
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
- Eric Weisstein's World of Mathematics, Digit.
Programs
-
Maple
with(numtheory):for n from 1 to 1000000 do:l:=evalf(floor(ilog10(n))+1):n0:=n:s1:=0:s2:=0:for m from 1 to l do:q:=n0:u:=irem(q,10):v:=iquo(q,10):n0:=v :s1:=s1+u:s2:=s2+u^2:od:if irem(n,s1)=0 and irem(n,s2)=0 then print(n):else fi:od:
-
Mathematica
Select[Range[2220], Divisible[#, Plus @@ (d = IntegerDigits[#])] && Divisible[#, Plus @@ (d^2)] &] (* Amiram Eldar, Mar 04 2023 *)
-
PARI
sd2(n) = my(d=digits(n)); sum(i=1, #d, d[i]^2); isok(n) = !(n % sumdigits(n)) && !(n % sd2(n)); \\ Michel Marcus, Dec 21 2014