cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A169663 Numbers k divisible by the sum of the digits and the sum of the squares of digits of k (in base 10).

Original entry on oeis.org

1, 10, 20, 50, 100, 110, 111, 120, 133, 200, 210, 240, 315, 360, 372, 400, 420, 480, 500, 550, 630, 803, 1000, 1010, 1011, 1020, 1071, 1100, 1101, 1110, 1134, 1148, 1200, 1300, 1302, 1330, 1344, 1431, 1547, 2000, 2010, 2023, 2040, 2100, 2196, 2200, 2220
Offset: 1

Views

Author

Michel Lagneau, Apr 05 2010

Keywords

Examples

			For k = 2196, 2^2 + 1^2 + 9^2 + 6^2 = 122, 2 + 1 + 9 + 6 = 18, and 2196 = 18*122 so it is divisible by both 18 and 122.
		

Crossrefs

Intersection of A005349 and A034087.

Programs

  • Maple
    with(numtheory):for n from 1 to 1000000 do:l:=evalf(floor(ilog10(n))+1):n0:=n:s1:=0:s2:=0:for m from 1 to l do:q:=n0:u:=irem(q,10):v:=iquo(q,10):n0:=v :s1:=s1+u:s2:=s2+u^2:od:if irem(n,s1)=0 and irem(n,s2)=0 then print(n):else fi:od:
  • Mathematica
    Select[Range[2220], Divisible[#, Plus @@ (d = IntegerDigits[#])] && Divisible[#, Plus @@ (d^2)] &] (* Amiram Eldar, Mar 04 2023 *)
  • PARI
    sd2(n) = my(d=digits(n)); sum(i=1, #d, d[i]^2);
    isok(n) = !(n % sumdigits(n)) && !(n % sd2(n)); \\ Michel Marcus, Dec 21 2014

Formula

A007953(k)|k and A003132(k)|k.