A169664 Numbers k divisible respectively by the sum of digits, the sum of the squares and the sum of the cubes of digits in base 10 of k.
1, 10, 100, 110, 111, 200, 500, 1000, 1010, 1011, 1100, 1101, 1110, 2000, 2352, 5000, 5500, 10000, 10010, 10011, 10100, 10101, 10110, 11000, 11001, 11010, 11100, 11112, 20000, 22000, 22200, 23520, 25032, 25110, 30100, 40000, 41013, 44160, 50000
Offset: 1
Examples
For k = 174192, 1^3 + 7^3 + 4^3 + 1^3 + 9^3 + 2^3 = 1146, and 174192 = 152*1146; 1^2 + 7^2 + 4^2 + 1^2 + 9^2 + 2^2 = 152, and 174192 = 152*1146; 1 + 7 + 4 + 1 + 9 + 2 = 24, and 174192 = 24*7258.
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
- Eric Weisstein's World of Mathematics, Digit.
Programs
-
Maple
with(numtheory):for n from 1 to 200000 do:l:=evalf(floor(ilog10(n))+1) : n0:=n:s1:=0:s2:=0: s3:=0:for m from 1 to l do:q:=n0:u:=irem(q,10):v:=iquo(q,10):n0:=v :s1:=s1+u:s2:=s2+u^2:s3:=s3+u^3:od:if irem(n,s1)=0 and irem(n,s2)=0 and irem(n,s3)=0 then print(n):else fi:od:
-
Mathematica
dsQ[n_]:=Module[{idn=IntegerDigits[n]}, Divisible[n,Total[idn]] && Divisible[n,Total[idn^2]] && Divisible[n,Total[idn^3]]]; Select[Range[50000],dsQ] (* Harvey P. Dale, Feb 24 2011 *)