cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A169711 The function W_n(6) (see Borwein et al. reference for definition).

Original entry on oeis.org

1, 20, 93, 256, 545, 996, 1645, 2528, 3681, 5140, 6941, 9120, 11713, 14756, 18285, 22336, 26945, 32148, 37981, 44480, 51681, 59620, 68333, 77856, 88225, 99476, 111645, 124768, 138881, 154020, 170221, 187520, 205953, 225556, 246365, 268416, 291745, 316388
Offset: 1

Views

Author

N. J. A. Sloane, Apr 17 2010

Keywords

Crossrefs

The sequence in Table 1 of the Borwein et al. reference are A000384, A109711-A109713; A000984, A002893, A002895, A169714, A169715.
Column 3 of A287316.
Cf. A287314.

Programs

  • Magma
    [6*n^3-9*n^2+4*n: n in [1..40]]; // Vincenzo Librandi, May 28 2017
    
  • Maple
    A169711 := proc(n)
            W(n,6) ;
    end proc:
    seq(A169711(n),n=1..20) ; # uses W from A169715; R. J. Mathar, Mar 28 2012
    a := n -> 6*n^3 - 9*n^2 + 4*n: seq(a(n), n=1..33); # Peter Luschny, May 27 2017
  • Mathematica
    CoefficientList[Series[(1 + 16 x + 19 x^2) / (1 - x)^4, {x, 0, 50}], x] (* or *) Table[6 n^3 - 9 n^2 + 4 n, {n, 1, 40}] (* Vincenzo Librandi, May 28 2017 *)
    LinearRecurrence[{4,-6,4,-1},{1,20,93,256},40] (* Harvey P. Dale, Feb 27 2023 *)
  • PARI
    a(n)=6*n^3-9*n^2+4*n \\ Charles R Greathouse IV, Oct 18 2022

Formula

a(n) = 6*n^3 - 9*n^2 + 4*n. - Peter Luschny, May 27 2017
G.f.: x*(1+16*x+19*x^2)/(1-x)^4. - Vincenzo Librandi, May 28 2017
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4). - Vincenzo Librandi, May 28 2017