A169711 The function W_n(6) (see Borwein et al. reference for definition).
1, 20, 93, 256, 545, 996, 1645, 2528, 3681, 5140, 6941, 9120, 11713, 14756, 18285, 22336, 26945, 32148, 37981, 44480, 51681, 59620, 68333, 77856, 88225, 99476, 111645, 124768, 138881, 154020, 170221, 187520, 205953, 225556, 246365, 268416, 291745, 316388
Offset: 1
Links
- Vincenzo Librandi, Table of n, a(n) for n = 1..1000
- Jonathan M. Borwein, Dirk Nuyens, Armin Straub, and James Wan, Some Arithmetic Properties of Short Random Walk Integrals, May 2011.
- Pakawut Jiradilok and Elchanan Mossel, Gaussian Broadcast on Grids, arXiv:2402.11990 [cs.IT], 2024. See p. 27.
- Index entries for linear recurrences with constant coefficients, signature (4,-6,4,-1).
Crossrefs
Programs
-
Magma
[6*n^3-9*n^2+4*n: n in [1..40]]; // Vincenzo Librandi, May 28 2017
-
Maple
A169711 := proc(n) W(n,6) ; end proc: seq(A169711(n),n=1..20) ; # uses W from A169715; R. J. Mathar, Mar 28 2012 a := n -> 6*n^3 - 9*n^2 + 4*n: seq(a(n), n=1..33); # Peter Luschny, May 27 2017
-
Mathematica
CoefficientList[Series[(1 + 16 x + 19 x^2) / (1 - x)^4, {x, 0, 50}], x] (* or *) Table[6 n^3 - 9 n^2 + 4 n, {n, 1, 40}] (* Vincenzo Librandi, May 28 2017 *) LinearRecurrence[{4,-6,4,-1},{1,20,93,256},40] (* Harvey P. Dale, Feb 27 2023 *)
-
PARI
a(n)=6*n^3-9*n^2+4*n \\ Charles R Greathouse IV, Oct 18 2022
Formula
a(n) = 6*n^3 - 9*n^2 + 4*n. - Peter Luschny, May 27 2017
G.f.: x*(1+16*x+19*x^2)/(1-x)^4. - Vincenzo Librandi, May 28 2017
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4). - Vincenzo Librandi, May 28 2017