A169718 Number of ways of making change for n cents using coins of 1, 5, 10, 25, 50 and 100 cents.
1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 4, 4, 4, 4, 4, 6, 6, 6, 6, 6, 9, 9, 9, 9, 9, 13, 13, 13, 13, 13, 18, 18, 18, 18, 18, 24, 24, 24, 24, 24, 31, 31, 31, 31, 31, 39, 39, 39, 39, 39, 50, 50, 50, 50, 50, 62, 62, 62, 62, 62, 77, 77, 77, 77, 77, 93, 93, 93, 93, 93, 112, 112, 112, 112, 112, 134, 134
Offset: 0
Keywords
References
- R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics. Addison-Wesley, Reading, MA, 1990, p. 316.
- G. Pólya and G. Szegő, Problems and Theorems in Analysis, Springer-Verlag, NY, 2 vols., 1972, Vol. 1, p. 1.
Links
- T. D. Noe, Table of n, a(n) for n = 0..10000
- M. Erickson, Change for a dollar, change for a million, Math. Horizons, Feb 2010, pp. 22-25.
- B. Polster, Explaining the bizarre pattern in making change for a googol dollars (infinite generating functions), Mathologer video (2021).
- Index entries for sequences related to making change.
- Index entries for linear recurrences with constant coefficients, order 191.
Programs
-
Haskell
a169718 = p [1,5,10,25,50,100] where p _ 0 = 1 p [] _ = 0 p ks'@(k:ks) m = if m < k then 0 else p ks' (m - k) + p ks m -- Reinhard Zumkeller, Dec 15 2013
-
Mathematica
Table[Length[FrobeniusSolve[{1,5,10,25,50,100},n]],{n,0,80}] (* or *) CoefficientList[Series[1/((1-x)(1-x^5)(1-x^10)(1-x^25)(1-x^50)(1-x^100)),{x,0,80}],x] (* Harvey P. Dale, Dec 25 2011 *)
Formula
G.f.: 1/((1-x)*(1-x^5)*(1-x^10)*(1-x^25)*(1-x^50)*(1-x^100)).
Comments