A169809 Array T(n,k) read by antidiagonals: T(n,k) is the number of [n,k]-triangulations in the plane that have reflection symmetry, n >= 0, k >= 0.
1, 1, 1, 1, 2, 1, 2, 3, 4, 3, 2, 6, 7, 10, 8, 5, 8, 18, 19, 29, 23, 5, 18, 26, 52, 57, 86, 68, 14, 23, 68, 82, 166, 176, 266, 215, 14, 56, 91, 220, 270, 524, 557, 844, 680, 42, 70, 248, 321, 769, 890, 1722, 1806, 2742, 2226, 42, 180, 318, 872, 1151, 2568, 2986, 5664, 5954, 9032, 7327
Offset: 0
Examples
Array begins: ==================================================== n\k | 0 1 2 3 4 5 6 7 ----+----------------------------------------------- 0 | 1 1 1 2 2 5 5 14 ... 1 | 1 2 3 6 8 18 23 56 ... 2 | 1 4 7 18 26 68 91 248 ... 3 | 3 10 19 52 82 220 321 872 ... 4 | 8 29 57 166 270 769 1151 3296 ... 5 | 23 86 176 524 890 2568 4020 11558 ... 6 | 68 266 557 1722 2986 8902 14197 42026 ... 7 | 215 844 1806 5664 10076 30362 49762 148208 ... ...
References
- C. F. Earl and L. J. March, Architectural applications of graph theory, pp. 327-355 of R. J. Wilson and L. W. Beineke, editors, Applications of Graph Theory. Academic Press, NY, 1979.
Links
- Andrew Howroyd, Table of n, a(n) for n = 0..1325
- William G. Brown, Enumeration of Triangulations of the Disk, Proc. Lond. Math. Soc. s3-14 (1964) 746-768.
- C. F. Earl and L. J. March, Architectural applications of graph theory, pp. 327-355 of R. J. Wilson and L. W. Beineke, editors, Applications of Graph Theory. Academic Press, NY, 1979. (Annotated scanned copy)
Crossrefs
Programs
-
PARI
\\ See link in A169808 for script. A169809Array(7) \\ Andrew Howroyd, Feb 22 2021
Extensions
Edited and terms a(36) and beyond from Andrew Howroyd, Feb 22 2021
Comments