cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A169822 Numbers k such that A(k+1) = A(k) + 1, where A() = A005101() are the abundant numbers.

Original entry on oeis.org

1432, 1487, 1849, 2742, 5380, 5434, 6474, 6786, 9752, 10674, 12311, 14115, 14557, 15237, 17266, 17558, 18987, 19138, 19761, 20110, 20259, 20343, 20967, 20997, 22262, 22735, 24342, 25650, 26003, 26471, 27122, 27721, 28914, 28968, 29741, 30203, 30294, 31274, 33322
Offset: 1

Views

Author

N. J. A. Sloane, May 29 2010

Keywords

Comments

A096399 is the main entry for this sequence.

Crossrefs

Programs

  • GAP
    A:=Filtered([1..150000],n->Sigma(n)>2*n);;
      a:=Filtered([1..Length(A)-1],i->A[i+1]=A[i]+1); # Muniru A Asiru, Jun 10 2018
    
  • Maple
    with(numtheory): A:=select(n->sigma(n)>2*n,[$1..150000]):
      a:=select(j->A[j+1]=A[j]+1,[$1..nops(A)-1]); # Muniru A Asiru, Jun 10 2018
  • Mathematica
    fQ[n_] := DivisorSigma[1, n] > 2 n; lst = {}; c = 0; k = 1; While[k < 125000, If[fQ@k, c++; If[fQ[k - 1], AppendTo[lst, c - 1]]]; k++ ]; lst (* Robert G. Wilson v, Jun 11 2010 *)
  • PARI
    list(lim) = {my(k = 1, k2, m = 0); for(k2 = 2, lim, if(sigma(k2, -1) > 2, if(k2 == k1 + 1, print1(m, ", ")); m++; k1 = k2));} \\ Amiram Eldar, Mar 01 2025

Formula

a(n) = A091194(A096399(n)). - Amiram Eldar, Mar 01 2025

Extensions

a(10) onwards from Robert G. Wilson v, Jun 11 2010