A169822 Numbers k such that A(k+1) = A(k) + 1, where A() = A005101() are the abundant numbers.
1432, 1487, 1849, 2742, 5380, 5434, 6474, 6786, 9752, 10674, 12311, 14115, 14557, 15237, 17266, 17558, 18987, 19138, 19761, 20110, 20259, 20343, 20967, 20997, 22262, 22735, 24342, 25650, 26003, 26471, 27122, 27721, 28914, 28968, 29741, 30203, 30294, 31274, 33322
Offset: 1
Keywords
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000 (terms 1..7000 from Muniru A Asiru)
Programs
-
GAP
A:=Filtered([1..150000],n->Sigma(n)>2*n);; a:=Filtered([1..Length(A)-1],i->A[i+1]=A[i]+1); # Muniru A Asiru, Jun 10 2018
-
Maple
with(numtheory): A:=select(n->sigma(n)>2*n,[$1..150000]): a:=select(j->A[j+1]=A[j]+1,[$1..nops(A)-1]); # Muniru A Asiru, Jun 10 2018
-
Mathematica
fQ[n_] := DivisorSigma[1, n] > 2 n; lst = {}; c = 0; k = 1; While[k < 125000, If[fQ@k, c++; If[fQ[k - 1], AppendTo[lst, c - 1]]]; k++ ]; lst (* Robert G. Wilson v, Jun 11 2010 *)
-
PARI
list(lim) = {my(k = 1, k2, m = 0); for(k2 = 2, lim, if(sigma(k2, -1) > 2, if(k2 == k1 + 1, print1(m, ", ")); m++; k1 = k2));} \\ Amiram Eldar, Mar 01 2025
Formula
Extensions
a(10) onwards from Robert G. Wilson v, Jun 11 2010
Comments