cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A096399 Numbers k such that both k and k+1 are abundant.

Original entry on oeis.org

5775, 5984, 7424, 11024, 21735, 21944, 26144, 27404, 39375, 43064, 49664, 56924, 58695, 61424, 69615, 70784, 76544, 77175, 79695, 81080, 81675, 82004, 84524, 84644, 89775, 91664, 98175, 103455, 104895, 106784, 109395, 111824, 116655, 116864, 120015, 121904, 122264
Offset: 1

Views

Author

John L. Drost, Aug 06 2004

Keywords

Comments

Numbers k such that both sigma(k) > 2k and sigma(k+1) > 2*(k+1).
Numbers k such that both k and k+1 are in A005101.
Set difference of sequences A103289 and {2^m-1} for m in A103291.
The numbers of terms not exceeding 10^k, for k = 4, 5, ..., are 3, 27, 357, 3723, 36640, 365421, 3665799, 36646071, ... . Apparently, the asymptotic density of this sequence exists and equals 0.000366... . - Amiram Eldar, Sep 02 2022

Examples

			sigma(5775) = sigma(3*5*5*7*11) = 11904 > 2*5775.
sigma(5776) = sigma(2*2*2*2*19*19) = 11811 > 2*5776.
		

Crossrefs

Programs

  • Mathematica
    fQ[n_] := DivisorSigma[1, n] > 2 n; Select[ Range@ 117000, fQ[ # ] && fQ[ # + 1] &] (* Robert G. Wilson v, Jun 11 2010 *)
    Select[Partition[Select[Range[120000], DivisorSigma[1, #] > 2 # &], 2, 1], Differences@ # == {1} &][[All, 1]] (* Michael De Vlieger, May 20 2017 *)
  • PARI
    for(i=1,1000000,if(sigma(i)>2*i && sigma(i+1)>2*(i+1),print(i))); \\ Max Alekseyev, Jan 28 2005

Formula

a(n) = A005101(A169822(n)). - Amiram Eldar, Mar 01 2025

Extensions

Two further terms from Max Alekseyev, Jan 28 2005
Entry revised by N. J. A. Sloane, Dec 03 2006
Edited by T. D. Noe, Nov 15 2010

A303741 Numbers k such that A(k+1) = A(k) + 2, where A() = A005101() are the abundant numbers.

Original entry on oeis.org

2, 7, 10, 14, 16, 19, 22, 23, 26, 31, 36, 39, 44, 45, 48, 51, 52, 59, 62, 65, 70, 71, 74, 79, 81, 82, 83, 86, 87, 90, 93, 96, 99, 104, 107, 110, 111, 114, 118, 120, 125, 128, 131, 133, 135, 138, 141, 146, 149, 150, 155, 156, 158, 164, 169, 170, 175, 178, 179
Offset: 1

Views

Author

Muniru A Asiru, Jun 22 2018

Keywords

Crossrefs

A231086 is the main entry for this sequence.

Programs

  • GAP
    A:=Filtered([1..1000],n->Sigma(n)>2*n);;  a:=Filtered([1..Length(A)-1],i->A[i+1]=A[i]+2);
    
  • Maple
    with(numtheory): A:=select(n->sigma(n)>2*n,[$1..1000]):  a:=select(j->A[j+1]=A[j]+2,[$1..nops(A)-1]);
  • Mathematica
    Position[Differences[Select[Range[750], DivisorSigma[1, #] > 2*# &]], 2] // Flatten (* Amiram Eldar, Mar 15 2024 *)
  • PARI
    list(lim) = {my(k = 1, k2, m = 0); for(k2 = 2, lim, if(sigma(k2, -1) > 2, if(k2 == k1 + 2, print1(m, ", ")); m++; k1 = k2));} \\ Amiram Eldar, Mar 01 2025

Formula

Sequence is { k | A005101(k+1) = A005101(k) + 2 }.
a(n) = A091194(A231086(n)). - Amiram Eldar, Mar 01 2025

A316095 Numbers m such that A(m+1) = A(m) + 3, where A() = A005101() are the abundant numbers.

Original entry on oeis.org

231, 232, 385, 386, 544, 545, 699, 700, 858, 859, 1014, 1015, 1172, 1173, 1326, 1327, 1431, 1488, 1600, 1601, 1645, 1646, 1699, 1700, 1806, 1807, 1850, 1959, 1960, 2015, 2016, 2093, 2094, 2119, 2120, 2221, 2222, 2272, 2273, 2378, 2379, 2433, 2434, 2583, 2584
Offset: 1

Views

Author

Muniru A Asiru, Jun 25 2018

Keywords

Crossrefs

A228382 is the main sequence for this entry.
Numbers m such that A(m+1) = A(m) + k, where A() = A005101() are the abundant numbers: A169822 (k=1), A303741 (k=2), this sequence (k=3), A316096 (k=4), A316097 (k=6).

Programs

  • GAP
    A:=Filtered([1..20000],n->Sigma(n)>2*n);;  a:=Filtered([1..Length(A)-1],i->A[i+1]=A[i]+3);
    
  • Maple
    with(numtheory): A:=select(n->sigma(n)>2*n,[$1..20000]):  a:=select(j->A[j+1]=A[j]+3,[$1..nops(A)-1]);
  • Mathematica
    Position[Map[{#1, #2 - 3} & @@ # &, Partition[Select[Range[12000], DivisorSigma[1, #] > 2 # &], 2, 1]], ?(SameQ @@ # &)][[All, 1]] (* _Michael De Vlieger, Jun 29 2018 *)
  • PARI
    lista(nn) = {my(va = select(x->(sigma(x) > 2*x), [1..nn]), dva = vector(#va-1, k, va[k+1] - va[k])); select(x->(x==3), dva, 1);} \\ Michel Marcus, Jul 03 2018

Formula

Sequence is { m | A005101(m+1) = A005101(m) + 3 }.
Sequence is { m | A125115(m) = 3 }.
a(n) = A091194(A228382(n)). - Amiram Eldar, Mar 01 2025

A316096 Numbers m such that A(m+1) = A(m) + 4, where A() = A005101() are the abundant numbers.

Original entry on oeis.org

3, 6, 11, 13, 17, 18, 21, 24, 25, 32, 35, 40, 43, 46, 47, 50, 53, 60, 63, 64, 69, 72, 75, 78, 85, 88, 91, 94, 95, 100, 105, 106, 109, 112, 115, 117, 121, 124, 127, 130, 132, 136, 139, 140, 147, 148, 151, 154, 157, 159, 165, 168, 171, 176, 177, 180, 181, 184
Offset: 1

Views

Author

Muniru A Asiru, Jun 25 2018

Keywords

Crossrefs

A316098 is the main sequence for this entry.
Numbers m such that A(m+1) = A(m) + k, where A() = A005101() are the abundant numbers: A169822 (k=1), A303741 (k=2), A316095 (k=3), this sequence (k=4), A316097 (k=6).

Programs

  • GAP
    A:=Filtered([1..1000],n->Sigma(n)>2*n);;  a:=Filtered([1..Length(A)-1],i->A[i+1]=A[i]+4);
    
  • Maple
    with(numtheory): A:=select(n->sigma(n)>2*n,[$1..1000]):  a:=select(j->A[j+1]=A[j]+4,[$1..nops(A)-1]);
  • Mathematica
    Position[Map[{#1, #2 - 4} & @@ # &, Partition[Select[Range[10^3], DivisorSigma[1, #] > 2 # &], 2, 1]], ?(SameQ @@ # &)][[All, 1]] (* _Michael De Vlieger, Jun 29 2018 *)
  • PARI
    list(lim) = {my(k = 1, k2, m = 0); for(k2 = 2, lim, if(sigma(k2, -1) > 2, if(k2 == k1 + 4, print1(m, ", ")); m++; k1 = k2));} \\ Amiram Eldar, Mar 01 2025

Formula

Sequence is { m | A005101(m+1) = A005101(m) + 4 }.
Sequence is { m | A125115(m) = 4 }.
a(n) = A091194(A316098(n)). - Amiram Eldar, Mar 01 2025

A316097 Numbers m such that A(m+1) = A(m) + 6, where A() = A005101() are the abundant numbers.

Original entry on oeis.org

1, 4, 5, 8, 9, 12, 15, 20, 27, 28, 29, 30, 33, 34, 37, 38, 41, 42, 49, 54, 55, 56, 57, 58, 61, 66, 67, 68, 73, 76, 77, 80, 84, 89, 92, 97, 98, 101, 102, 103, 108, 113, 116, 119, 122, 123, 126, 129, 134, 137, 142, 143, 144, 145, 152, 153, 160, 161, 162, 163
Offset: 1

Views

Author

Muniru A Asiru, Jun 25 2018

Keywords

Crossrefs

A316099 is the main sequence for this entry.
Numbers m such that A(m+1) = A(m) + k, where A() = A005101() are the abundant numbers: A169822 (k=1), A303741 (k=2), A316095 (k=3), A316096 (k=4), this sequence (k=6).

Programs

  • GAP
    A:=Filtered([1..700],n->Sigma(n)>2*n);;  a:=Filtered([1..Length(A)-1],i->A[i+1]=A[i]+6);
    
  • Maple
    with(numtheory): A:=select(n->sigma(n)>2*n,[$1..700]):  a:=select(j->A[j+1]=A[j]+6,[$1..nops(A)-1]);
  • Mathematica
    Position[Map[{#1, #2 - 6} & @@ # &, Partition[Select[Range[10^3], DivisorSigma[1, #] > 2 # &], 2, 1]], ?(SameQ @@ # &)][[All, 1]] (* _Michael De Vlieger, Jun 29 2018 *)
  • PARI
    list(lim) = {my(k = 1, k2, m = 0); for(k2 = 2, lim, if(sigma(k2, -1) > 2, if(k2 == k1 + 6, print1(m, ", ")); m++; k1 = k2));} \\ Amiram Eldar, Mar 01 2025

Formula

Sequence is { m | A005101(m+1) = A005101(m) + 6 }.
Sequence is { m | A125115(m) = 6 }.
a(n) = A091194(A316099(n)). - Amiram Eldar, Mar 01 2025
Showing 1-5 of 5 results.