cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 41 results. Next

A283418 Numbers n such that n and n+1 are primitive abundant.

Original entry on oeis.org

82004, 158235, 326864, 442035, 516704, 1102724, 1606275, 2151435, 2697435, 2912084, 2921535, 2979675, 3002804, 3241755, 3647475, 4322835, 5801984, 5905844, 6069195, 7251075, 7387604, 7553924, 8272124, 8788724, 9292724, 9909584
Offset: 1

Views

Author

Emmanuel Vantieghem, May 02 2017

Keywords

Comments

Intersection of A091191 and -1 + A091191.

Examples

			82004 is in the sequence because it is abundant (sum divisors = 164640, > 2*82004) and 82005 is also abundant (sum divisors = 165888, > 2*82005).
		

Crossrefs

Programs

  • Mathematica
    fQ[m_] := DivisorSigma[1, m] > 2 m;
    gQ[m_] := fQ[m] && Union[fQ /@ Rest[Most[Divisors[m]]]] == {False};
    V = Select[Range[10^7], gQ]; Intersection[V, V - 1]

A231086 Initial members of abundant twins, i.e., values of k such that (k, k+2) are both abundant numbers.

Original entry on oeis.org

18, 40, 54, 70, 78, 88, 100, 102, 112, 138, 160, 174, 196, 198, 208, 220, 222, 258, 270, 280, 304, 306, 318, 340, 348, 350, 352, 364, 366, 378, 390, 400, 414, 438, 448, 460, 462, 474, 490, 498, 520, 532, 544, 550, 558, 570, 580, 606, 616, 618, 640, 642, 648
Offset: 1

Views

Author

Shyam Sunder Gupta, Nov 03 2013

Keywords

Comments

The first odd term is <= 76728582876430878992529528245373 (see A294025). Note that there are infinitely many odd terms, since if k is an odd term then 2*t*k*(k+2) + k are odd terms for all t >= 0. - Jianing Song, Nov 13 2022
From Amiram Eldar, May 30 2023: (Start)
The least odd term is larger than 10^11.
The numbers of terms not exceeding 10^k, for k = 2, 3, ..., are 7, 81, 820, 8074, 80410, 804623, 8040362, 80414534, 804257458, 8042148484, ... . Apparently, the asymptotic density of this sequence exists and equals 0.08042... . (End)

Examples

			18, 20 are abundant, thus the smaller number is listed.
		

Crossrefs

Programs

  • GAP
    A:=Filtered([1..700],n->Sigma(n)>2*n);;  a:=List(Filtered([1..Length(A)-1],i->A[i+1]=A[i]+2),j->A[j]); # Muniru A Asiru, Jun 24 2018
  • Maple
    withnumtheory: select(n->sigma(n)>2*n and sigma(n+1)<2*(n+1) and sigma(n+2)>2*(n+2),[$1..700]); # Muniru A Asiru, Jun 24 2018
  • Mathematica
    AbundantQ[n_] := DivisorSigma[1, n] > 2n; m = 0; a2 = {}; Do[If[AbundantQ[n], m = m + 1; If[m > 1, AppendTo[a2, n - 2]], m = 0], {n, 2, 100000, 2}];a2
    Module[{nn=650,sa},sa=Table[If[DivisorSigma[1,n]>2n,1,0],{n,nn}];Transpose[ SequencePosition[sa,{1,0,1}]]][[1]] (* The program uses the SequencePosition function from Mathematica version 10 *) (* Harvey P. Dale, May 20 2016 *)
  • PARI
    is(n)=sigma(n,-1)>2 && sigma(n+2,-1)>2 \\ Charles R Greathouse IV, Feb 21 2017
    

Formula

a(n) = A005101(A303741(n)). - Amiram Eldar, Mar 01 2025

A318167 Numbers k such that both k and k+1 are bi-unitary abundant numbers.

Original entry on oeis.org

21735, 21944, 43064, 49664, 58695, 76544, 106784, 135135, 144584, 160544, 188055, 209055, 227744, 256095, 262184, 300104, 345344, 348704, 382304, 387584, 407295, 409184, 414855, 437535, 498015, 520695, 560384, 567944, 611415, 679455, 687015, 705375, 709695
Offset: 1

Views

Author

Amiram Eldar, Aug 20 2018

Keywords

Comments

The bi-unitary version of A096399.

Examples

			21735 is in the sequence since both 21735 and 21736 are bi-unitary abundant numbers.
		

Crossrefs

Cf. A096399 (analog for sigma), A188999 (bi-unitary sigma).
Cf. A292982 (bi-unitary abundant), A293186 (odd bi-unitary abundant).

Programs

  • Mathematica
    f[n_] := Select[Divisors[n], Function[d, CoprimeQ[d, n/d]]]; bsigma[m_] := DivisorSum[m, # &, Last@Intersection[f@#, f[m/#]] == 1 &]; bAbundantQ[n_] := bsigma[n] > 2 n; seq={}; n=1; While[Length[seq]<32,If[bAbundantQ[n] && bAbundantQ [n+1],AppendTo[seq,n]];n++];seq
  • PARI
    a188999(n) = {f = factor(n); for (i=1, #f~, p = f[i, 1]; e = f[i, 2]; f[i, 1] = if (e % 2, (p^(e+1)-1)/(p-1), (p^(e+1)-1)/(p-1) -p^(e/2)); f[i, 2] = 1; ); factorback(f); }
    isok(n) = (a188999(n) > 2*n) && (a188999(n+1) > 2*(n+1)); \\ Michel Marcus, Aug 21 2018

A327635 Numbers k such that both k and k+1 are infinitary abundant numbers (A129656).

Original entry on oeis.org

21735, 21944, 43064, 58695, 188055, 262184, 414855, 520695, 567944, 611415, 687015, 764504, 792855, 809864, 812889, 833624, 874664, 911624, 945944, 976184, 991304, 1019655, 1026375, 1065015, 1073709, 1157624, 1201095, 1218944, 1248344, 1254015, 1272375, 1272704
Offset: 1

Views

Author

Amiram Eldar, Sep 20 2019

Keywords

Comments

The least k such that k, k+1 and k+2 are all infinitary abundant numbers is a(75976) = 2666847104.

Examples

			21735 is in the sequence since both 21735 and 21736 are infinitary abundant: isigma(21735) = 46080 > 2 * 21735, and isigma(21736) = 50400 > 2 * 21736 (isigma is the sum of infinitary divisors, A049417).
		

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := p^(2^(-1 + Position[Reverse @ IntegerDigits[e, 2], ?(# == 1 &)])); isigma[1] = 1; isigma[n] := Times @@ (Flatten @ (f @@@ FactorInteger[n]) + 1); abQ[n_] := isigma[n] > 2n; s={}; ab1 = 0; Do[ab2 = abQ[n]; If[ab1 && ab2, AppendTo[s, n-1]]; ab1 = ab2, {n, 2, 10^5}]; s

A096536 Numbers k such that k, k+1, k+2 are all abundant.

Original entry on oeis.org

171078830, 268005374, 321893648, 336038624, 487389824, 600350750, 663249950, 668645054, 938109248, 1053424448, 1079741024, 1102433408, 1139364224, 1148927624, 1267293950, 1275861950, 1310259950, 1344330350, 1352253824
Offset: 1

Views

Author

John L. Drost, Aug 13 2004

Keywords

Comments

The entries shown are all even, the first odd k would have to have sigma(k*(k+2)) > 4k*(k+2) so k > 10^19 (cf. A119240).
From Amiram Eldar, Oct 02 2022: (Start)
The least term that is == 1 (mod 3) is a(1292) = 55959128224, and the least term that is divisible by 3 is a(1590) = 68972878974.
The numbers of terms not exceeding 10^k, for k = 9, 10, ..., are 9, 226, 2298, 22583, ... . Apparently, the asymptotic density of this sequence exists and equals 2.2...*10^(-8). (End)

Examples

			For 171078830 = 2*5*13*23*29*1973, sigma(n)/n = 2.09355, for 171078831 = 3^3*7*11*19*61*71, sigma(n)/n = 2.00396 and for 171078832 = 2^4*31*344917, sigma(n)/n = 2.00000579.
		

Crossrefs

Subsequence of A005101 and A096399.
Cf. A119240.

Programs

  • PARI
    isab(x) = sigma(x) > 2*x; \\ A005101
    isok(k) = isab(k) && isab(k+1) && isab(k+2); \\ Michel Marcus, Nov 19 2022

Extensions

a(15)-a(19) from Donovan Johnson, Dec 29 2008

A331412 Unitary abundant numbers k such that k + 1 is also unitary abundant.

Original entry on oeis.org

8857357509, 10783550414, 15197873690, 23620285689, 25537083494, 34736070369, 60326914934, 64139567205, 73969772954, 75776483145, 77509981185, 83968675790, 93092467754, 100012014465, 112236593469, 113606741534, 116519300534, 118905484334, 132584489114, 134889106065
Offset: 1

Views

Author

Amiram Eldar and Giovanni Resta, Jan 18 2020

Keywords

Comments

Apparently most of the terms are squarefree. Up to 10^13 there are 1150 terms, for only 17 terms k either k or k + 1 is nonsquarefree, and there are no terms k such that both k and k + 1 are nonsquarefree. The first nonsquarefree term is a(32) = 285491549265.

Examples

			8857357509 is a term since usigma(8857357509) = 17766604800 > 2 * 8857357509, and usigma(8857357510) = 17851083264 > 2 * 8857357510, where usigma is the sum of unitary divisors function (A034448).
		

Crossrefs

Analogous sequences: A096399 (regular abundant), A283418 (primitive), A318167 (bi-unitary), A327635 (infinitary), A327942 (nonunitary).

A108926 Initial members of abundant quintuplets, i.e., values of k such that (k, k+2, k+4, k+6, k+8) are all abundant numbers.

Original entry on oeis.org

2988, 4728, 9724, 18844, 22984, 30544, 35148, 39948, 45048, 50464, 55788, 56808, 58056, 58780, 69184, 78048, 81948, 85744, 101148, 106144, 108256, 109248, 117124, 134088, 139744, 139804, 152568, 171288, 174348, 175908, 182644, 189768, 197028
Offset: 1

Views

Author

Jason Earls, Jul 19 2005

Keywords

Crossrefs

Programs

  • Mathematica
    SequencePosition[Table[If[DivisorSigma[1,n]>2n,1,0],{n,200000}],{1,,1,,1,,1,,1}][[All,1]] (* Harvey P. Dale, Mar 06 2022 *)
  • PARI
    is(n)=sigma(n,-1)>2 && sigma(n+2,-1)>2 && sigma(n+4,-1)>2 && sigma(n+6,-1)>2 && sigma(n+8,-1)>2 \\ Charles R Greathouse IV, Feb 21 2017

A231088 Initial members of abundant triples, i.e., values of k such that (k, k+2, k+4) are all abundant numbers.

Original entry on oeis.org

100, 196, 220, 304, 348, 350, 364, 460, 616, 640, 700, 736, 832, 1036, 1060, 1144, 1180, 1216, 1312, 1372, 1456, 1480, 1660, 1696, 1876, 1900, 1936, 1984, 1998, 2000, 2020, 2176, 2208, 2210, 2296, 2320, 2548, 2620, 2716, 2740, 2748, 2750, 2988, 2990, 2992
Offset: 1

Views

Author

Shyam Sunder Gupta, Nov 03 2013

Keywords

Examples

			100, 102, 104 are abundant, thus the smallest number is listed.
		

Crossrefs

Programs

  • Mathematica
    AbundantQ[n_] := DivisorSigma[1, n] > 2n; m = 0; a = {}; Do[If[AbundantQ[n], m = m + 1; If[m > 2, AppendTo[a, n - 4]], m = 0], {n, 2, 1000000, 2}];a
    2*Flatten[Position[Partition[Table[If[DivisorSigma[1,n]>2n,1,0],{n,2,3000,2}],3,1], {1,1,1}]] (* Harvey P. Dale, Aug 19 2014 *)
    2*SequencePosition[Table[If[DivisorSigma[1,n]>2n,1,0],{n,2,3000,2}],{1,1,1}][[;;,1]] (* Harvey P. Dale, Feb 27 2023 *)
  • PARI
    is(n)=sigma(n,-1)>2 && sigma(n+2,-1)>2 && sigma(n+4,-1)>2 \\ Charles R Greathouse IV, Feb 21 2017

A231089 Initial members of abundant quadruplets, i.e., values of k such that (k, k+2, k+4, k+6) are all abundant numbers.

Original entry on oeis.org

348, 1998, 2208, 2748, 2988, 2990, 3006, 3246, 3708, 3846, 4506, 4728, 4730, 5166, 6228, 7068, 7206, 7908, 8886, 9348, 9588, 9724, 9726, 11406, 13746, 14208, 14766, 17148, 17988, 18126, 18588, 18828, 18844, 18846, 19548, 20148, 20478, 21486, 22188, 22984
Offset: 1

Views

Author

Shyam Sunder Gupta, Nov 03 2013

Keywords

Examples

			348, 350, 352, 354 are abundant, thus the smallest number is listed.
		

Crossrefs

Programs

  • Mathematica
    AbundantQ[n_] := DivisorSigma[1, n] > 2n; m = 0; a = {}; Do[If[AbundantQ[n], m = m + 1; If[m > 3, AppendTo[a, n - 6]], m = 0], {n, 2, 1000000, 2}];a
    SequencePosition[Table[If[DivisorSigma[1,n]>2n,1,0],{n,23000}],{1,,1,,1,,1}][[All,1]] (* _Harvey P. Dale, Apr 02 2018 *)
  • PARI
    is(n)=sigma(n,-1)>2 && sigma(n+2,-1)>2 && sigma(n+4,-1)>2 && sigma(n+6,-1)>2 \\ Charles R Greathouse IV, Feb 21 2017

A327942 Numbers k such that both k and k+1 are nonunitary abundant numbers (A064597).

Original entry on oeis.org

165375, 893024, 1047375, 1576575, 2282175, 2304224, 2858624, 3614624, 4068224, 4096575, 4597424, 4975424, 6591375, 7574175, 8555624, 9511424, 10446975, 10749375, 10872224, 11477024, 12535424, 13773375, 13946624, 14277375, 15926624, 16041375, 16505775, 16769024
Offset: 1

Views

Author

Amiram Eldar, Sep 30 2019

Keywords

Examples

			165375 is in the sequence since both 165375 and 165376 are nonunitary abundant: nusigma(165375) = 179280 > 165375, and nusigma(165376) = 183600 > 165376 (nusigma is the sum of nonunitary divisors, A048146).
		

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := (p^(e + 1) - 1)/(p - 1); nuabQ[n_] := Times @@ (f @@@ FactorInteger[n]) - Times @@ (1 + Power @@@ FactorInteger[n]) > n; s = {}; q1 = False; Do[q2 = nuabQ[n]; If[q1 && q2, AppendTo[s, n - 1]]; q1 = q2, {n, 2, 10^7}]; s
Showing 1-10 of 41 results. Next