cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 11 results. Next

A231093 Initial members of abundant octuplets, i.e., values of n such that (n, n+2, n+4, n+6, n+8, n+10, n+12, n+14) are all abundant numbers.

Original entry on oeis.org

221355126, 402640540, 668862580, 739577140, 1415514246, 1598558646, 1678915540, 1714512246, 1812156340, 1829740086, 1892686326, 2097915966, 2259080046, 2452774780, 2453605540, 2521418740, 2726361940, 3118553740, 3252749646, 3318076446, 4119153340, 4748101660
Offset: 1

Views

Author

Shyam Sunder Gupta, Nov 03 2013

Keywords

Examples

			221355126, 221355128, 221355130, 221355132, 221355134, 221355136, 221355138, 221355140 are abundant, thus the smallest number is listed.
		

Crossrefs

Programs

  • Mathematica
     AbundantQ[n_] := DivisorSigma[1, n] > 2n; m = 0; a = {}; Do[If[AbundantQ[n], m = m + 1; If[m > 7, AppendTo[a, n - 14]], m = 0], {n, 2, 2000000000, 2}];a

A108926 Initial members of abundant quintuplets, i.e., values of k such that (k, k+2, k+4, k+6, k+8) are all abundant numbers.

Original entry on oeis.org

2988, 4728, 9724, 18844, 22984, 30544, 35148, 39948, 45048, 50464, 55788, 56808, 58056, 58780, 69184, 78048, 81948, 85744, 101148, 106144, 108256, 109248, 117124, 134088, 139744, 139804, 152568, 171288, 174348, 175908, 182644, 189768, 197028
Offset: 1

Views

Author

Jason Earls, Jul 19 2005

Keywords

Crossrefs

Programs

  • Mathematica
    SequencePosition[Table[If[DivisorSigma[1,n]>2n,1,0],{n,200000}],{1,,1,,1,,1,,1}][[All,1]] (* Harvey P. Dale, Mar 06 2022 *)
  • PARI
    is(n)=sigma(n,-1)>2 && sigma(n+2,-1)>2 && sigma(n+4,-1)>2 && sigma(n+6,-1)>2 && sigma(n+8,-1)>2 \\ Charles R Greathouse IV, Feb 21 2017

A231088 Initial members of abundant triples, i.e., values of k such that (k, k+2, k+4) are all abundant numbers.

Original entry on oeis.org

100, 196, 220, 304, 348, 350, 364, 460, 616, 640, 700, 736, 832, 1036, 1060, 1144, 1180, 1216, 1312, 1372, 1456, 1480, 1660, 1696, 1876, 1900, 1936, 1984, 1998, 2000, 2020, 2176, 2208, 2210, 2296, 2320, 2548, 2620, 2716, 2740, 2748, 2750, 2988, 2990, 2992
Offset: 1

Views

Author

Shyam Sunder Gupta, Nov 03 2013

Keywords

Examples

			100, 102, 104 are abundant, thus the smallest number is listed.
		

Crossrefs

Programs

  • Mathematica
    AbundantQ[n_] := DivisorSigma[1, n] > 2n; m = 0; a = {}; Do[If[AbundantQ[n], m = m + 1; If[m > 2, AppendTo[a, n - 4]], m = 0], {n, 2, 1000000, 2}];a
    2*Flatten[Position[Partition[Table[If[DivisorSigma[1,n]>2n,1,0],{n,2,3000,2}],3,1], {1,1,1}]] (* Harvey P. Dale, Aug 19 2014 *)
    2*SequencePosition[Table[If[DivisorSigma[1,n]>2n,1,0],{n,2,3000,2}],{1,1,1}][[;;,1]] (* Harvey P. Dale, Feb 27 2023 *)
  • PARI
    is(n)=sigma(n,-1)>2 && sigma(n+2,-1)>2 && sigma(n+4,-1)>2 \\ Charles R Greathouse IV, Feb 21 2017

A231089 Initial members of abundant quadruplets, i.e., values of k such that (k, k+2, k+4, k+6) are all abundant numbers.

Original entry on oeis.org

348, 1998, 2208, 2748, 2988, 2990, 3006, 3246, 3708, 3846, 4506, 4728, 4730, 5166, 6228, 7068, 7206, 7908, 8886, 9348, 9588, 9724, 9726, 11406, 13746, 14208, 14766, 17148, 17988, 18126, 18588, 18828, 18844, 18846, 19548, 20148, 20478, 21486, 22188, 22984
Offset: 1

Views

Author

Shyam Sunder Gupta, Nov 03 2013

Keywords

Examples

			348, 350, 352, 354 are abundant, thus the smallest number is listed.
		

Crossrefs

Programs

  • Mathematica
    AbundantQ[n_] := DivisorSigma[1, n] > 2n; m = 0; a = {}; Do[If[AbundantQ[n], m = m + 1; If[m > 3, AppendTo[a, n - 6]], m = 0], {n, 2, 1000000, 2}];a
    SequencePosition[Table[If[DivisorSigma[1,n]>2n,1,0],{n,23000}],{1,,1,,1,,1}][[All,1]] (* _Harvey P. Dale, Apr 02 2018 *)
  • PARI
    is(n)=sigma(n,-1)>2 && sigma(n+2,-1)>2 && sigma(n+4,-1)>2 && sigma(n+6,-1)>2 \\ Charles R Greathouse IV, Feb 21 2017

A231090 Initial members of abundant sextuplets, i.e., values of n such that (n, n+2, n+4, n+6, n+8, n+10) are all abundant numbers.

Original entry on oeis.org

801340, 962650, 7353340, 21964300, 41642140, 48049690, 55455940, 89034940, 89851450, 92253850, 105259540, 107948380, 109455340, 114295450, 116754940, 122349370, 135575980, 156009850, 159521050, 173645440, 188586700, 192674170, 193137850, 220301770, 221355126
Offset: 1

Views

Author

Shyam Sunder Gupta, Nov 03 2013

Keywords

Examples

			801340, 801342, 801344, 801346, 801348, 801350 are abundant, thus the smallest number is listed.
		

Crossrefs

Programs

  • Mathematica
    AbundantQ[n_] := DivisorSigma[1, n] > 2n; m = 0; a = {}; Do[If[AbundantQ[n], m = m + 1; If[m > 5, AppendTo[a, n - 10]], m = 0], {n, 2, 1000000000, 2}];a
    2*SequencePosition[Table[If[DivisorSigma[1,n]>2n,1,0],{n,2,2214*10^5,2}],{1,1,1,1,1,1}][[All,1]] (* Harvey P. Dale, May 12 2022 *)
  • PARI
    is(n)=sigma(n,-1)>2 && sigma(n+2,-1)>2 && sigma(n+4,-1)>2 && sigma(n+6,-1)>2 && sigma(n+8,-1)>2 && sigma(n+10,-1)>2 \\ Charles R Greathouse IV, Feb 21 2017

A231092 Initial members of abundant septuplets, i.e., values of n such that (n, n+2, n+4, n+6, n+8, n+10, n+12) are all abundant numbers.

Original entry on oeis.org

221355126, 221355128, 402640540, 402640542, 668862580, 668862582, 739577140, 739577142, 1415514246, 1415514248, 1598558646, 1598558648, 1678915540, 1678915542, 1714512246, 1714512248, 1812156340, 1812156342, 1829740086, 1829740088, 1892686326, 1892686328
Offset: 1

Views

Author

Shyam Sunder Gupta, Nov 03 2013

Keywords

Comments

If the terms are divided into groups of two, are the differences between the two grouped terms always 2? - Harvey P. Dale, Mar 24 2025

Examples

			221355126, 221355128, 221355130, 221355132, 221355134, 221355136, 221355138 are abundant, thus the smallest number is listed.
		

Crossrefs

Programs

  • Mathematica
    AbundantQ[n_] := DivisorSigma[1, n] > 2n; m = 0; a = {}; Do[If[AbundantQ[n], m = m + 1; If[m > 6, AppendTo[a, n - 12]], m = 0], {n, 2, 2000000000, 2}];a
    SequencePosition[Table[If[DivisorSigma[1,n]>2n,1,0],{n,18927*10^5}],{1,,1,,1,,1,,1,,1,,1}][[;;,1]] (* Harvey P. Dale, Mar 24 2025 *)
  • PARI
    is(n)=sigma(n,-1)>2 && sigma(n+2,-1)>2 && sigma(n+4,-1)>2 && sigma(n+6,-1)>2 && sigma(n+8,-1)>2 && sigma(n+10,-1)>2 && sigma(n+12,-1)>2 \\ Charles R Greathouse IV, Feb 21 2017

A303741 Numbers k such that A(k+1) = A(k) + 2, where A() = A005101() are the abundant numbers.

Original entry on oeis.org

2, 7, 10, 14, 16, 19, 22, 23, 26, 31, 36, 39, 44, 45, 48, 51, 52, 59, 62, 65, 70, 71, 74, 79, 81, 82, 83, 86, 87, 90, 93, 96, 99, 104, 107, 110, 111, 114, 118, 120, 125, 128, 131, 133, 135, 138, 141, 146, 149, 150, 155, 156, 158, 164, 169, 170, 175, 178, 179
Offset: 1

Views

Author

Muniru A Asiru, Jun 22 2018

Keywords

Crossrefs

A231086 is the main entry for this sequence.

Programs

  • GAP
    A:=Filtered([1..1000],n->Sigma(n)>2*n);;  a:=Filtered([1..Length(A)-1],i->A[i+1]=A[i]+2);
    
  • Maple
    with(numtheory): A:=select(n->sigma(n)>2*n,[$1..1000]):  a:=select(j->A[j+1]=A[j]+2,[$1..nops(A)-1]);
  • Mathematica
    Position[Differences[Select[Range[750], DivisorSigma[1, #] > 2*# &]], 2] // Flatten (* Amiram Eldar, Mar 15 2024 *)
  • PARI
    list(lim) = {my(k = 1, k2, m = 0); for(k2 = 2, lim, if(sigma(k2, -1) > 2, if(k2 == k1 + 2, print1(m, ", ")); m++; k1 = k2));} \\ Amiram Eldar, Mar 01 2025

Formula

Sequence is { k | A005101(k+1) = A005101(k) + 2 }.
a(n) = A091194(A231086(n)). - Amiram Eldar, Mar 01 2025

A306952 Lesser member of twin weird numbers: weird numbers n (A006037) such that n+2 is also weird.

Original entry on oeis.org

512468, 540890, 688028, 1390268, 1565828, 1741388, 2268068, 3525410, 3848108, 4374788, 6481508, 6657068, 7534868, 7885988, 7914410, 8089970, 8838968, 9143330, 9290468, 10021130, 10343828, 10898930, 12654530, 12801668, 12872510, 13152788, 13181210, 14234570
Offset: 1

Views

Author

Amiram Eldar, Mar 17 2019

Keywords

Comments

Number of terms below 10^k for k = 6, 7, ... 10: 19, 231, 2111, 22426.
The first occurrences of 2 consecutive pairs of twin weirds are (21607670, 21607672, 21608090, 21608092), (873951608, 873951610, 873951890, 873951892), ...

Examples

			512468 is in the sequence since both 512468 and 512470 are weird numbers.
		

Crossrefs

Cf. A006037, A125109, A231086 (supersequence), A231964.

A306497 Abundant numbers that differ from the next abundant number by 5.

Original entry on oeis.org

5391411025, 26957055120, 28816162375, 33426748350, 34393484125, 37739877175, 40342627320, 48150877770, 50866790970, 53356378075, 59305521270, 60711976320, 61164628525, 63395557225, 64899009175, 67275433225, 70088343325, 74922022170, 75665665075, 76781129425
Offset: 1

Views

Author

Sergio Pimentel, Feb 19 2019

Keywords

Comments

Since all multiples of 6 are abundant, numbers in this sequence have to be abundant numbers of the form 6n or 6n + 1. Most common difference between abundant numbers is 6, followed by 2, 4, 3, 1. 5 is the least common.

Examples

			a(1) = 5391411025 is in the sequence since it is abundant and the next abundant number is 5391411030 which is a(1)+5 and all the numbers in between are deficient.
		

Crossrefs

Programs

  • PARI
    isok(n) = for(k=1, 4, if(sigma(n+k) > 2*(n+k), return(0))); (sigma(n) > 2*n) && (sigma(n+5) > 2*(n+5)); \\ Daniel Suteu, Jul 24 2019

Formula

Either a(n) or a(n)+5 are in A115414. - Amiram Eldar, Jul 16 2019

Extensions

More terms from Amiram Eldar, Jul 16 2019

A329525 a(n) is the smallest positive number k such that k and k+n are both abundant.

Original entry on oeis.org

5775, 18, 942, 20, 940, 12, 945, 12, 936, 20, 4725, 12, 4712, 40, 930, 20, 928, 12, 2816, 20, 924, 18, 945, 12, 920, 30, 918, 12, 2176, 12, 3465, 24, 912, 20, 910, 12, 7208, 18, 906, 20, 4095, 12, 5312, 12, 900, 20, 945, 12, 896, 20, 894, 18, 4672, 12, 945, 24
Offset: 1

Views

Author

Jaroslav Krizek, Nov 15 2019

Keywords

Comments

Sequences of numbers k such that k and k+n are both abundant for any n: A096399 (n = 1), A231086 (n = 2).

Examples

			Number 5775 is the smallest abundant number k such that k+1 = 5576 is also abundant.
		

Crossrefs

Programs

  • Magma
    [Min([m: m in[1..10^4] | SumOfDivisors(m) gt 2*m and SumOfDivisors(m+n) gt 2*(m+n)]): n in [1..60]];
    
  • PARI
    A329525(n) = for(k=1, oo, if((sigma(k) > (k+k)) && (sigma(n+k) > 2*(n+k)), return(k))); \\ Antti Karttunen, Nov 15 2019
Showing 1-10 of 11 results. Next