cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A333951 Numbers k such that both k and k+1 are recursive abundant numbers (A333928).

Original entry on oeis.org

56924, 82004, 84524, 109395, 158235, 241604, 261260, 266475, 285075, 361844, 442035, 445004, 469755, 611324, 666315, 694484, 712844, 922635, 968715, 971684, 1102724, 1172115, 1190475, 1199835, 1239524, 1304324, 1338435, 1430715, 1442924, 1486275, 1523115, 1550835
Offset: 1

Views

Author

Amiram Eldar, Apr 11 2020

Keywords

Examples

			56924 is a term since A333926(56924) = 120960 > 2 * 56924, and A333926(56925) = 116064 > 2 * 56925.
		

Crossrefs

Subsequence of A333928.
Analogous sequences: A096399, A283418 (primitive), A318167 (bi-unitary), A327635 (infinitary), A327942 (nonunitary), A331412 (unitary).

Programs

  • Mathematica
    recDivQ[n_, 1] = True; recDivQ[n_, d_] := recDivQ[n, d] = Divisible[n, d] && AllTrue[FactorInteger[d], recDivQ[IntegerExponent[n, First[#]], Last[#]] &]; recDivs[n_] := Select[Divisors[n], recDivQ[n, #] &]; f[p_, e_] := 1 + Total[p^recDivs[e]]; recDivSum[1] = 1; recDivSum[n_] := Times @@ (f @@@ FactorInteger[n]); recAbQ[n_] := recDivSum[n] > 2*n; Select[Range[2*10^5], recAbQ[#] && recAbQ[# + 1] &]

A357608 Numbers k such that k and k+1 are both in A357605.

Original entry on oeis.org

76544, 104895, 126224, 165375, 170624, 174824, 201824, 245024, 257984, 271215, 273104, 316575, 338624, 387855, 447615, 469664, 477224, 540224, 618975, 633555, 641024, 659295, 705375, 752895, 770175, 842624, 843975, 862784, 870975, 893024, 913275, 957824, 1047375
Offset: 1

Views

Author

Amiram Eldar, Oct 06 2022

Keywords

Comments

Numbers k such that A162296(k) > 2*k and A162296(k+1) > 2*(k+1).

Examples

			76544 is a term since 76544 and 76545 are both in A357605: A162296(76544) = 170688 > 2*76544 and A162296(76545) = 157248 > 2*76545.
		

Crossrefs

Cf. A162296.
Subsequence of A013929, A096399 and A357605.

Programs

  • Mathematica
    q[n_] := Module[{f = FactorInteger[n], p, e}, p = f[[;; , 1]]; e = f[[;; , 2]]; Times @@ ((p^(e + 1) - 1)/(p - 1)) - Times @@ (p + 1) > 2*n]; Select[Range[2, 10^6], q[#] && q[#+1] &]

A335251 Numbers k such that k and k+1 have the same unitary abundance (A129468).

Original entry on oeis.org

1, 20, 35, 143, 208, 2623, 5183, 27796, 11177983, 69677008, 920158207, 1099508482048
Offset: 1

Views

Author

Amiram Eldar, May 28 2020

Keywords

Comments

Are there any unitary abundant numbers (A034683) in this sequence?
a(12) > 10^11.
a(13) > 8*10^12. Also terms: 2^36 * 68719644673, 2^48 * 281474901625261, 2^64 * 18446632096776339457. - Giovanni Resta, May 29 2020

Examples

			1 is a term since 1 and 2 have the same unitary abundance: A129468(1) = usigma(1) - 2*1 = 1 - 2 = -1, and A129468(2) = usigma(2) - 2*2 = 3 - 4 = -1.
		

Crossrefs

Programs

  • Mathematica
    usigma[1] = 1; usigma[n_] := Times @@ (1 + Power @@@ FactorInteger[n]); udef[n_] := 2*n - usigma[n]; Select[Range[30000], udef[#] == udef[# + 1] &]

Extensions

a(12) from Giovanni Resta, May 29 2020

A339937 Numbers k such that k and k+1 are both coreful abundant numbers (A308053).

Original entry on oeis.org

2282175, 33350624, 46734975, 86424975, 87152624, 105674624, 126114975, 169707824, 179762624, 214491375, 221370975, 235857824, 266022224, 270586575, 278524575, 297774224, 360021375, 372683024, 380858624, 395715375, 425840624, 470624175, 489873824, 503963775
Offset: 1

Views

Author

Amiram Eldar, Dec 23 2020

Keywords

Examples

			2282175 is a term since 2282175 and 2282176 are both coreful abundant numbers.
		

Crossrefs

Subsequence of A308053.

Programs

  • Mathematica
    f[p_, e_] := (p^(e + 1) - 1)/(p - 1) - 1; s[1] = 1; s[n_] := Times @@ (f @@@ FactorInteger[n]); abQ[n_] := s[n] > 2*n; q1 = False; seq = {}; Do[q2 = abQ[n]; If[q1 && q2, AppendTo[seq, n - 1]]; q1 = q2, {n, 2, 10^8}]; seq

A348276 Numbers k such that k and k+1 are both noninfinitary abundant numbers (A348274).

Original entry on oeis.org

64198575, 84909824, 86424975, 110238975, 113223824, 191206575, 211266224, 224722575, 231058575, 231800624, 240069375, 240584175, 245383424, 262648575, 262911824, 279597824, 293893424, 297774224, 333773055, 338676975, 340250624, 340829775, 347244975, 372683024
Offset: 1

Views

Author

Amiram Eldar, Oct 09 2021

Keywords

Examples

			64198575 is a term since A348271(64198575) = 69470136 > 64198575 and A348271(64198576) = 65363424 > 64198576.
		

Crossrefs

Cf. A348271.
Subsequence of A096399 and A348274.
Similar sequences: A318167, A327635, A327942, A331412.

Programs

  • Mathematica
    f[p_, e_] := Module[{b = IntegerDigits[e, 2], m}, m = Length[b]; Product[If[b[[j]] > 0, 1 + p^(2^(m - j)), 1], {j, 1, m}]]; isigma[1] = 1; isigma[n_] := Times @@ f @@@ FactorInteger[n]; q[n_] := DivisorSigma[1,n] - isigma[n] > n; seq = {}; q1 = q[1]; Do[q2 = q[n]; If[q1 && q2, AppendTo[seq, n-1]]; q1=q2 ,{n,2,10^8}]; seq

A348606 Numbers k such that k and k+1 are both nonexponential abundant numbers.

Original entry on oeis.org

21735, 76544, 170624, 301664, 345344, 348704, 382304, 739935, 862784, 1218944, 1262624, 1272704, 1314495, 1370655, 1376864, 1539615, 1558304, 1707615, 1718144, 1761375, 1845375, 1890944, 1926015, 2100735, 2132864, 2223584, 2415104, 2463615, 2581215, 2675295, 2747744
Offset: 1

Views

Author

Amiram Eldar, Oct 25 2021

Keywords

Examples

			21735 is a term since A160135(21735) = 21930 > 21735 and A160135(21736) = 23230 > 21736.
		

Crossrefs

Cf. A160135.
Subsequence of A096399 and A348604.
Similar sequences: A318167, A327635, A327942, A331412, A348276.

Programs

  • Mathematica
    esigma[n_] := Times @@ (Sum[First[#]^d, {d, Divisors[Last[#]]}] &) /@ FactorInteger[n]; q[n_] := DivisorSigma[1, n] - esigma[n] > n; Select[Range[1, 3*10^6], q[#] && q[#+1] &]

A361935 Numbers k such that k and k+1 are both primitive unitary abundant numbers (definition 2, A302574).

Original entry on oeis.org

2457405145194, 2601523139214, 3320774552094, 3490250769005, 3733421997305, 3934651766045, 3954730124345, 4514767592334, 4553585751714, 4563327473705, 5226433847634
Offset: 1

Views

Author

Amiram Eldar, Mar 31 2023

Keywords

Comments

There are no more terms below 10^13.
There are no numbers k such that k and k+1 are both unitary abundant numbers with definition 1 (A302573) below 10^13.

Crossrefs

Subsequence of A034683, A302574 and A331412.
Cf. A302573.
Similar sequences: A283418, A330872.

Programs

  • Mathematica
    f1[p_, e_] := 1 + 1/p^e; f2[p_, e_] := p^e/(p^e + 1);
    puabQ[n_] := (r = Times @@ f1 @@@ (f = FactorInteger[n])) > 2 && r * Max @@ f2 @@@ f <= 2;
    Select[Import["https://oeis.org/A331412/b331412.txt", "Table"][[;; , 2]], puabQ[#] && puabQ[# + 1] &]

A380933 Numbers k such that k and k+1 are both in A380929.

Original entry on oeis.org

121643775, 157390064, 161019495, 275734304, 584899875, 1493214975, 1614323655, 2043708975, 3081783375, 3118599224, 3426851295, 3902652495, 3947893424, 5849043375, 11731509855, 12138531615, 13008843224, 14598032624, 17588484584, 19782621495, 20191564575, 20759209064
Offset: 1

Views

Author

Amiram Eldar, Feb 08 2025

Keywords

Comments

Numbers k such that A380845(k) > 2*k and A380845(k+1) > 2*(k+1).

Examples

			121643775 is a term since A380845(121643775) = 244722015 > 2 * 121643775 = 243287550, and A380845(121643776) = 256456081 > 2 * 121643776 = 243287552.
		

Crossrefs

Subsequence of A096399 and A380929.

Programs

  • Mathematica
    q[k_] := Module[{h = DigitCount[k, 2, 1]}, DivisorSum[k, # &, DigitCount[#, 2, 1] == h &] > 2*k];
    seq[lim_] := Module[{s = {}}, Do[If[q[k], If[q[k-1], AppendTo[s, k-1]]; If[q[k+1], AppendTo[s, k]]], {k, 3, lim, 2}]; s];
    seq[3*10^8]
  • PARI
    isab(k) = {my(h = hammingweight(k)); sumdiv(k, d, d*(hammingweight(d) == h)) > 2*k;}
    list(lim) = forstep(k = 3, lim, 2, if(isab(k), if(isab(k-1), print1(k-1, ", ")); if(isab(k+1), print1(k, ", "))));
Showing 1-8 of 8 results.