A331412
Unitary abundant numbers k such that k + 1 is also unitary abundant.
Original entry on oeis.org
8857357509, 10783550414, 15197873690, 23620285689, 25537083494, 34736070369, 60326914934, 64139567205, 73969772954, 75776483145, 77509981185, 83968675790, 93092467754, 100012014465, 112236593469, 113606741534, 116519300534, 118905484334, 132584489114, 134889106065
Offset: 1
8857357509 is a term since usigma(8857357509) = 17766604800 > 2 * 8857357509, and usigma(8857357510) = 17851083264 > 2 * 8857357510, where usigma is the sum of unitary divisors function (A034448).
A330872
Numbers k such that k and k+1 are both primitive abundant numbers (A071395).
Original entry on oeis.org
82004, 158235, 516704, 2921535, 5801984, 10846016, 12374144, 12603824, 18738224, 24252074, 32409530, 33696975, 35356544, 36149295, 41078114, 42541190, 43485584, 65090864, 88304475, 90725775, 181480695, 183872535, 213261795, 233762528, 242301344, 254502495, 254630144
Offset: 1
82004 is a term since both 82004 and 82005 are abundant, and all of their proper divisors are deficient numbers.
-
primAbQ[n_] := DivisorSigma[1, n] > 2 n && AllTrue[Most @ Rest @ Divisors[n], DivisorSigma[1, #] < 2*# &]; q1 = False; seq = {}; Do[q2 = primAbQ[n]; If[q1 && q2, AppendTo[seq, n - 1]]; q1 = q2, {n, 2, 6*10^6}]; seq
A333951
Numbers k such that both k and k+1 are recursive abundant numbers (A333928).
Original entry on oeis.org
56924, 82004, 84524, 109395, 158235, 241604, 261260, 266475, 285075, 361844, 442035, 445004, 469755, 611324, 666315, 694484, 712844, 922635, 968715, 971684, 1102724, 1172115, 1190475, 1199835, 1239524, 1304324, 1338435, 1430715, 1442924, 1486275, 1523115, 1550835
Offset: 1
56924 is a term since A333926(56924) = 120960 > 2 * 56924, and A333926(56925) = 116064 > 2 * 56925.
-
recDivQ[n_, 1] = True; recDivQ[n_, d_] := recDivQ[n, d] = Divisible[n, d] && AllTrue[FactorInteger[d], recDivQ[IntegerExponent[n, First[#]], Last[#]] &]; recDivs[n_] := Select[Divisors[n], recDivQ[n, #] &]; f[p_, e_] := 1 + Total[p^recDivs[e]]; recDivSum[1] = 1; recDivSum[n_] := Times @@ (f @@@ FactorInteger[n]); recAbQ[n_] := recDivSum[n] > 2*n; Select[Range[2*10^5], recAbQ[#] && recAbQ[# + 1] &]
A334418
Primitive abundant numbers (A091191) with a record gap to the next primitive abundant number.
Original entry on oeis.org
12, 20, 30, 42, 114, 138, 678, 1758, 8296, 10052, 12966, 13076, 14862, 19635, 38950, 50802, 77118, 94108, 218334, 439134, 478194, 746202, 1128174, 2028198, 6934398, 7750146, 8330924, 10030804, 33467106, 36205482, 60716562, 65183838, 69334698, 81757564, 84010614
Offset: 1
The first 6 terms of A091191 are 12, 18, 20, 30, 42 and 56. The differences between these terms are 6, 2, 10, 12 and 14. The record gaps are 6, 10, 12 and 14, which occur after the terms 12, 20, 30 and 42.
-
primAbQ[n_] := DivisorSigma[1, n] > 2 n && AllTrue[Most @ Rest @ Divisors[n], DivisorSigma[1, #] <= 2*# &]; seq = {}; m = 12; dm = 0; Do[If[primAbQ[n], d = n - m; If[d > dm, dm = d; AppendTo[seq, m]]; m = n], {n, 13, 10^6}]; seq
A357608
Numbers k such that k and k+1 are both in A357605.
Original entry on oeis.org
76544, 104895, 126224, 165375, 170624, 174824, 201824, 245024, 257984, 271215, 273104, 316575, 338624, 387855, 447615, 469664, 477224, 540224, 618975, 633555, 641024, 659295, 705375, 752895, 770175, 842624, 843975, 862784, 870975, 893024, 913275, 957824, 1047375
Offset: 1
76544 is a term since 76544 and 76545 are both in A357605: A162296(76544) = 170688 > 2*76544 and A162296(76545) = 157248 > 2*76545.
-
q[n_] := Module[{f = FactorInteger[n], p, e}, p = f[[;; , 1]]; e = f[[;; , 2]]; Times @@ ((p^(e + 1) - 1)/(p - 1)) - Times @@ (p + 1) > 2*n]; Select[Range[2, 10^6], q[#] && q[#+1] &]
A353544
Numbers k such that k and k+1 are both in A353543.
Original entry on oeis.org
285, 43214, 190773, 2676321, 3027002, 3209073, 3894638, 5344118, 8963306, 15059985, 16558005, 18619634, 35731857, 36233846, 36413385, 37601342, 43559714, 52596434, 70700145, 75135962, 81136418, 83557617, 90577994, 91667666, 99846201, 111263074, 124896045, 128709801
Offset: 1
285 is a term since both 285 and 286 are in A353543.
-
q[n_] := DivisorSigma[-1, n] > Pi^2/6 && AllTrue[Most @ Divisors[n], DivisorSigma[-1, #] < Pi^2/6 &]; Position[Partition[Array[q, 4*10^6], 2, 1], {True, True}] // Flatten
A339937
Numbers k such that k and k+1 are both coreful abundant numbers (A308053).
Original entry on oeis.org
2282175, 33350624, 46734975, 86424975, 87152624, 105674624, 126114975, 169707824, 179762624, 214491375, 221370975, 235857824, 266022224, 270586575, 278524575, 297774224, 360021375, 372683024, 380858624, 395715375, 425840624, 470624175, 489873824, 503963775
Offset: 1
2282175 is a term since 2282175 and 2282176 are both coreful abundant numbers.
-
f[p_, e_] := (p^(e + 1) - 1)/(p - 1) - 1; s[1] = 1; s[n_] := Times @@ (f @@@ FactorInteger[n]); abQ[n_] := s[n] > 2*n; q1 = False; seq = {}; Do[q2 = abQ[n]; If[q1 && q2, AppendTo[seq, n - 1]]; q1 = q2, {n, 2, 10^8}]; seq
A361934
Numbers k such that k and k+1 are both primitive Zumkeller numbers (A180332).
Original entry on oeis.org
82004, 84524, 158235, 516704, 2921535, 5801984, 10846016, 12374144, 12603824, 18738224, 24252074, 24887655, 25691984, 32409530, 33696975, 35356544, 36149295, 41078114, 42541190, 43485584
Offset: 1
82004 is a term since 82004 and 82005 are both primitive Zumkeller numbers.
-
q[n_, d_, s1_, m1_] := Module[{s = s1, m = m1}, If[m == 0, False, While[d[[m]] > n, s -= d[[m]]; m--]; d[[m]] == n || If[s > n, q[n - d[[m]], d, s - d[[m]], m - 1] || q[n, d, s - d[[m]], m - 1], n == s]]];
(* after M. F. Hasler's pari code at A006037 *)
zumQ[n_] := Module[{d = Most[Divisors[n]], m, s}, m = Length[d]; s = Total[d]; If[OddQ[s + n], False, q[(s + n)/2, d, s, m]]];
primZumQ[n_] := zumQ[n] && AllTrue[Most[Divisors[n]], ! zumQ[#] &];
seq[kmax_] := Module[{s = {}, zq1 = False, zq2}, Do[zq2 = primZumQ[k]; If[zq1 && zq2, AppendTo[s, k - 1]]; zq1 = zq2, {k, 2, kmax}]; s]; seq[3*10^6]
-
is1(n,d,s,m) = {m||return; while(d[m]>n, s-=d[m]; m--||return); d[m]==n || if(nM. F. Hasler at A006037
isZum(n) = {my(d = divisors(n)[^-1], s = vecsum(d), m = #d); if((s+n)%2, return(0), is1((s+n)/2, d, s, m)); }
isPrimZum(n) = {if(!isZum(n), return(0)); fordiv(n, d, if(d < n && isZum(d), return(0))); 1;}
lista(kmax) = {my(is1 = 0, is2); for(k = 2, kmax, is2 = isPrimZum(k); if(is1 && is2, print1(k-1, ", ")); is1 = is2);}
A361935
Numbers k such that k and k+1 are both primitive unitary abundant numbers (definition 2, A302574).
Original entry on oeis.org
2457405145194, 2601523139214, 3320774552094, 3490250769005, 3733421997305, 3934651766045, 3954730124345, 4514767592334, 4553585751714, 4563327473705, 5226433847634
Offset: 1
-
f1[p_, e_] := 1 + 1/p^e; f2[p_, e_] := p^e/(p^e + 1);
puabQ[n_] := (r = Times @@ f1 @@@ (f = FactorInteger[n])) > 2 && r * Max @@ f2 @@@ f <= 2;
Select[Import["https://oeis.org/A331412/b331412.txt", "Table"][[;; , 2]], puabQ[#] && puabQ[# + 1] &]
A372300
Numbers k such that k and k+1 are both primitive infinitary abundant numbers (definition 1, A372298).
Original entry on oeis.org
812889, 3181815, 20787584, 181480695, 183872535, 307510664, 337206344, 350158808, 523403264, 744074624, 868421504, 1063361144, 1955365125, 2076191864, 2578966215, 3672231255, 4185590408, 5032685384, 7158001304, 8348108535, 10784978295, 16264812135, 20917209495, 24514454055
Offset: 1
-
isidiv(d, f) = {my(bne,bde); if (d==1, return (1)); for (k=1, #f~, bne = binary(f[k, 2]); bde = binary(valuation(d, f[k, 1])); if (#bde < #bne, bde = concat(vector(#bne-#bde), bde)); for (j=1, #bne, if (! bne[j] && bde[j], return (0)); ); ); return (1); }
idivs(n) = {my(f = factor(n), d = divisors(f), idiv = []); for (k=1, #d, if (isidiv(d[k], f), idiv = concat(idiv, d[k])); ); idiv; } \\ Michel Marcus at A077609
isigma(n) = {my(f = factor(n), b); prod(i=1, #f~, b = binary(f[i, 2]); prod(k=1, #b, if(b[k], 1+f[i, 1]^(2^(#b-k)), 1)))} ;
isab(n) = isigma(n) > 2*n;
isprim(n) = select(x -> x= 2*x, idivs(n)) == [];
lista(kmax) = {my(is1 = 0, is2); for(k = 2, kmax, is2 = isab(k); if(is1 && is2, if(isprim(k-1) && isprim(k), print1(k-1, ", "))); is1 = is2);}
Showing 1-10 of 12 results.
Comments