cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 12 results. Next

A331412 Unitary abundant numbers k such that k + 1 is also unitary abundant.

Original entry on oeis.org

8857357509, 10783550414, 15197873690, 23620285689, 25537083494, 34736070369, 60326914934, 64139567205, 73969772954, 75776483145, 77509981185, 83968675790, 93092467754, 100012014465, 112236593469, 113606741534, 116519300534, 118905484334, 132584489114, 134889106065
Offset: 1

Views

Author

Amiram Eldar and Giovanni Resta, Jan 18 2020

Keywords

Comments

Apparently most of the terms are squarefree. Up to 10^13 there are 1150 terms, for only 17 terms k either k or k + 1 is nonsquarefree, and there are no terms k such that both k and k + 1 are nonsquarefree. The first nonsquarefree term is a(32) = 285491549265.

Examples

			8857357509 is a term since usigma(8857357509) = 17766604800 > 2 * 8857357509, and usigma(8857357510) = 17851083264 > 2 * 8857357510, where usigma is the sum of unitary divisors function (A034448).
		

Crossrefs

Analogous sequences: A096399 (regular abundant), A283418 (primitive), A318167 (bi-unitary), A327635 (infinitary), A327942 (nonunitary).

A330872 Numbers k such that k and k+1 are both primitive abundant numbers (A071395).

Original entry on oeis.org

82004, 158235, 516704, 2921535, 5801984, 10846016, 12374144, 12603824, 18738224, 24252074, 32409530, 33696975, 35356544, 36149295, 41078114, 42541190, 43485584, 65090864, 88304475, 90725775, 181480695, 183872535, 213261795, 233762528, 242301344, 254502495, 254630144
Offset: 1

Views

Author

Amiram Eldar, Apr 29 2020

Keywords

Comments

Not to be confused with A283418 in which the primitive abundant numbers can have perfect numbers as divisors (as defined in A091191).

Examples

			82004 is a term since both 82004 and 82005 are abundant, and all of their proper divisors are deficient numbers.
		

Crossrefs

Subsequence of A005101, A071395, A096399 and A283418.

Programs

  • Mathematica
    primAbQ[n_] := DivisorSigma[1, n] > 2 n && AllTrue[Most @ Rest @ Divisors[n], DivisorSigma[1, #] < 2*# &]; q1 = False; seq = {}; Do[q2 = primAbQ[n]; If[q1 && q2, AppendTo[seq, n - 1]]; q1 = q2, {n, 2, 6*10^6}]; seq

A333951 Numbers k such that both k and k+1 are recursive abundant numbers (A333928).

Original entry on oeis.org

56924, 82004, 84524, 109395, 158235, 241604, 261260, 266475, 285075, 361844, 442035, 445004, 469755, 611324, 666315, 694484, 712844, 922635, 968715, 971684, 1102724, 1172115, 1190475, 1199835, 1239524, 1304324, 1338435, 1430715, 1442924, 1486275, 1523115, 1550835
Offset: 1

Views

Author

Amiram Eldar, Apr 11 2020

Keywords

Examples

			56924 is a term since A333926(56924) = 120960 > 2 * 56924, and A333926(56925) = 116064 > 2 * 56925.
		

Crossrefs

Subsequence of A333928.
Analogous sequences: A096399, A283418 (primitive), A318167 (bi-unitary), A327635 (infinitary), A327942 (nonunitary), A331412 (unitary).

Programs

  • Mathematica
    recDivQ[n_, 1] = True; recDivQ[n_, d_] := recDivQ[n, d] = Divisible[n, d] && AllTrue[FactorInteger[d], recDivQ[IntegerExponent[n, First[#]], Last[#]] &]; recDivs[n_] := Select[Divisors[n], recDivQ[n, #] &]; f[p_, e_] := 1 + Total[p^recDivs[e]]; recDivSum[1] = 1; recDivSum[n_] := Times @@ (f @@@ FactorInteger[n]); recAbQ[n_] := recDivSum[n] > 2*n; Select[Range[2*10^5], recAbQ[#] && recAbQ[# + 1] &]

A334418 Primitive abundant numbers (A091191) with a record gap to the next primitive abundant number.

Original entry on oeis.org

12, 20, 30, 42, 114, 138, 678, 1758, 8296, 10052, 12966, 13076, 14862, 19635, 38950, 50802, 77118, 94108, 218334, 439134, 478194, 746202, 1128174, 2028198, 6934398, 7750146, 8330924, 10030804, 33467106, 36205482, 60716562, 65183838, 69334698, 81757564, 84010614
Offset: 1

Views

Author

Amiram Eldar, Apr 29 2020

Keywords

Comments

The record gap values are 6, 10, 12, 14, 24, 36, 70, 84, ... (see the link for more values).

Examples

			The first 6 terms of A091191 are 12, 18, 20, 30, 42 and 56. The differences between these terms are 6, 2, 10, 12 and 14. The record gaps are 6, 10, 12 and 14, which occur after the terms 12, 20, 30 and 42.
		

Crossrefs

Similar sequences: A306747, A306748, A306953.

Programs

  • Mathematica
    primAbQ[n_] := DivisorSigma[1, n] > 2 n && AllTrue[Most @ Rest @ Divisors[n], DivisorSigma[1, #] <= 2*# &]; seq = {}; m = 12; dm = 0; Do[If[primAbQ[n], d = n - m; If[d > dm, dm = d; AppendTo[seq, m]]; m = n], {n, 13, 10^6}]; seq

A357608 Numbers k such that k and k+1 are both in A357605.

Original entry on oeis.org

76544, 104895, 126224, 165375, 170624, 174824, 201824, 245024, 257984, 271215, 273104, 316575, 338624, 387855, 447615, 469664, 477224, 540224, 618975, 633555, 641024, 659295, 705375, 752895, 770175, 842624, 843975, 862784, 870975, 893024, 913275, 957824, 1047375
Offset: 1

Views

Author

Amiram Eldar, Oct 06 2022

Keywords

Comments

Numbers k such that A162296(k) > 2*k and A162296(k+1) > 2*(k+1).

Examples

			76544 is a term since 76544 and 76545 are both in A357605: A162296(76544) = 170688 > 2*76544 and A162296(76545) = 157248 > 2*76545.
		

Crossrefs

Cf. A162296.
Subsequence of A013929, A096399 and A357605.

Programs

  • Mathematica
    q[n_] := Module[{f = FactorInteger[n], p, e}, p = f[[;; , 1]]; e = f[[;; , 2]]; Times @@ ((p^(e + 1) - 1)/(p - 1)) - Times @@ (p + 1) > 2*n]; Select[Range[2, 10^6], q[#] && q[#+1] &]

A353544 Numbers k such that k and k+1 are both in A353543.

Original entry on oeis.org

285, 43214, 190773, 2676321, 3027002, 3209073, 3894638, 5344118, 8963306, 15059985, 16558005, 18619634, 35731857, 36233846, 36413385, 37601342, 43559714, 52596434, 70700145, 75135962, 81136418, 83557617, 90577994, 91667666, 99846201, 111263074, 124896045, 128709801
Offset: 1

Views

Author

Amiram Eldar, Apr 25 2022

Keywords

Examples

			285 is a term since both 285 and 286 are in A353543.
		

Crossrefs

Subsequence of A353543.
Subsequences: A283418, A330872.

Programs

  • Mathematica
    q[n_] := DivisorSigma[-1, n] > Pi^2/6 && AllTrue[Most @ Divisors[n], DivisorSigma[-1, #] < Pi^2/6 &]; Position[Partition[Array[q, 4*10^6], 2, 1], {True, True}] // Flatten

A339937 Numbers k such that k and k+1 are both coreful abundant numbers (A308053).

Original entry on oeis.org

2282175, 33350624, 46734975, 86424975, 87152624, 105674624, 126114975, 169707824, 179762624, 214491375, 221370975, 235857824, 266022224, 270586575, 278524575, 297774224, 360021375, 372683024, 380858624, 395715375, 425840624, 470624175, 489873824, 503963775
Offset: 1

Views

Author

Amiram Eldar, Dec 23 2020

Keywords

Examples

			2282175 is a term since 2282175 and 2282176 are both coreful abundant numbers.
		

Crossrefs

Subsequence of A308053.

Programs

  • Mathematica
    f[p_, e_] := (p^(e + 1) - 1)/(p - 1) - 1; s[1] = 1; s[n_] := Times @@ (f @@@ FactorInteger[n]); abQ[n_] := s[n] > 2*n; q1 = False; seq = {}; Do[q2 = abQ[n]; If[q1 && q2, AppendTo[seq, n - 1]]; q1 = q2, {n, 2, 10^8}]; seq

A361934 Numbers k such that k and k+1 are both primitive Zumkeller numbers (A180332).

Original entry on oeis.org

82004, 84524, 158235, 516704, 2921535, 5801984, 10846016, 12374144, 12603824, 18738224, 24252074, 24887655, 25691984, 32409530, 33696975, 35356544, 36149295, 41078114, 42541190, 43485584
Offset: 1

Views

Author

Amiram Eldar, Mar 31 2023

Keywords

Examples

			82004 is a term since 82004 and 82005 are both primitive Zumkeller numbers.
		

Crossrefs

Subsequence of A180332 and A328327.
Similar sequences: A283418, A330872, A334882.

Programs

  • Mathematica
    q[n_, d_, s1_, m1_] := Module[{s = s1, m = m1}, If[m == 0, False, While[d[[m]] > n, s -= d[[m]]; m--]; d[[m]] == n || If[s > n, q[n - d[[m]], d, s - d[[m]], m - 1] || q[n, d, s - d[[m]], m - 1], n == s]]];
    (* after M. F. Hasler's pari code at A006037 *)
    zumQ[n_] := Module[{d = Most[Divisors[n]], m, s}, m = Length[d]; s = Total[d]; If[OddQ[s + n], False, q[(s + n)/2, d, s, m]]];
    primZumQ[n_] := zumQ[n] && AllTrue[Most[Divisors[n]], ! zumQ[#] &];
    seq[kmax_] := Module[{s = {}, zq1 = False, zq2}, Do[zq2 = primZumQ[k]; If[zq1 && zq2, AppendTo[s, k - 1]]; zq1 = zq2, {k, 2, kmax}]; s]; seq[3*10^6]
  • PARI
    is1(n,d,s,m) = {m||return; while(d[m]>n, s-=d[m]; m--||return); d[m]==n || if(nM. F. Hasler at A006037
    isZum(n) = {my(d = divisors(n)[^-1], s = vecsum(d), m = #d); if((s+n)%2, return(0), is1((s+n)/2, d, s, m)); }
    isPrimZum(n) = {if(!isZum(n), return(0)); fordiv(n, d, if(d < n && isZum(d), return(0))); 1;}
    lista(kmax) = {my(is1 = 0, is2); for(k = 2, kmax, is2 = isPrimZum(k); if(is1 && is2, print1(k-1, ", ")); is1 = is2);}

A361935 Numbers k such that k and k+1 are both primitive unitary abundant numbers (definition 2, A302574).

Original entry on oeis.org

2457405145194, 2601523139214, 3320774552094, 3490250769005, 3733421997305, 3934651766045, 3954730124345, 4514767592334, 4553585751714, 4563327473705, 5226433847634
Offset: 1

Views

Author

Amiram Eldar, Mar 31 2023

Keywords

Comments

There are no more terms below 10^13.
There are no numbers k such that k and k+1 are both unitary abundant numbers with definition 1 (A302573) below 10^13.

Crossrefs

Subsequence of A034683, A302574 and A331412.
Cf. A302573.
Similar sequences: A283418, A330872.

Programs

  • Mathematica
    f1[p_, e_] := 1 + 1/p^e; f2[p_, e_] := p^e/(p^e + 1);
    puabQ[n_] := (r = Times @@ f1 @@@ (f = FactorInteger[n])) > 2 && r * Max @@ f2 @@@ f <= 2;
    Select[Import["https://oeis.org/A331412/b331412.txt", "Table"][[;; , 2]], puabQ[#] && puabQ[# + 1] &]

A372300 Numbers k such that k and k+1 are both primitive infinitary abundant numbers (definition 1, A372298).

Original entry on oeis.org

812889, 3181815, 20787584, 181480695, 183872535, 307510664, 337206344, 350158808, 523403264, 744074624, 868421504, 1063361144, 1955365125, 2076191864, 2578966215, 3672231255, 4185590408, 5032685384, 7158001304, 8348108535, 10784978295, 16264812135, 20917209495, 24514454055
Offset: 1

Views

Author

Amiram Eldar, Apr 25 2024

Keywords

Comments

The corresponding sequence with definition 2 (A372299) coincides with this sequence for the first 24 terms.

Crossrefs

Subsequence of A129656, A327635 and A372298.
Cf. A372299.
Similar sequences: A283418, A330872, A361935.

Programs

  • PARI
    isidiv(d, f) = {my(bne,bde); if (d==1, return (1)); for (k=1, #f~, bne = binary(f[k, 2]); bde = binary(valuation(d, f[k, 1])); if (#bde < #bne, bde = concat(vector(#bne-#bde), bde)); for (j=1, #bne, if (! bne[j] && bde[j], return (0)); ); ); return (1); }
    idivs(n) = {my(f = factor(n), d = divisors(f), idiv = []); for (k=1, #d, if (isidiv(d[k], f), idiv = concat(idiv, d[k])); ); idiv; } \\ Michel Marcus at A077609
    isigma(n) = {my(f = factor(n), b); prod(i=1, #f~, b = binary(f[i, 2]); prod(k=1, #b, if(b[k], 1+f[i, 1]^(2^(#b-k)), 1)))} ;
    isab(n) = isigma(n) > 2*n;
    isprim(n) = select(x -> x= 2*x, idivs(n)) == [];
    lista(kmax) = {my(is1 = 0, is2); for(k = 2, kmax, is2 = isab(k); if(is1 && is2, if(isprim(k-1) && isprim(k), print1(k-1, ", "))); is1 = is2);}
Showing 1-10 of 12 results. Next