cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A169873 Maximum number of rational points on a smooth absolutely irreducible projective curve of genus 2 over the field F_2^n.

Original entry on oeis.org

6, 10, 18, 33, 53, 97, 172, 321, 603, 1153, 2227, 4353, 8553, 16897, 33491, 66561, 132519, 264193, 527183, 1052673, 2102943, 4202497, 8400192, 16793601, 33577603, 67141633, 134264067, 268500993, 536963592, 1073872897, 2147669011, 4295229441, 8590305319, 17180393473, 34360479823
Offset: 1

Views

Author

N. J. A. Sloane, Jul 05 2010

Keywords

References

  • J. W. P. Hirschfeld, Linear codes and algebraic curves, pp. 35-53 of F. C. Holroyd and R. J. Wilson, editors, Geometrical Combinatorics. Pitman, Boston, 1984.

Crossrefs

Programs

  • Sage
    def a(n):
        if n==2: return 10
        elif (n%2 == 0): return 2^n + 1 + 2^(n/2+2)
        elif ((floor(2^(n/2+1))%2 == 0) or (2^n-1).is_square()
            or (4*2^n-3).is_square() or (4*2^n-7).is_square()):
            if (frac(2^(n/2+1)) > ((sqrt(5)-1)/2)): return 2^n + 2*floor(2^(n/2+1))
            else: return 2^n + 2*floor(2^(n/2+1)) - 1
        else: return 2^n + 1 + 2*floor(2^(n/2+1))  # Robin Visser, Oct 01 2023

Extensions

More terms from Robin Visser, Oct 01 2023