cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A169881 Maximum number of rational points on a smooth absolutely irreducible projective curve of genus 2 over the field F_5^n.

Original entry on oeis.org

12, 46, 170, 726, 3348, 16126, 79244, 393126, 1958714, 9778126, 48856074, 244203126, 1220842880, 6103828126, 30518276895, 152589453126, 762942946982, 3814705078126, 19073503797404, 95367470703126, 476837245549530, 2384185986328126, 11920929391810152, 59604645751953126, 298023226060613260
Offset: 1

Views

Author

N. J. A. Sloane, Jul 05 2010

Keywords

References

  • J. W. P. Hirschfeld, Linear codes and algebraic curves, pp. 35-53 of F. C. Holroyd and R. J. Wilson, editors, Geometrical Combinatorics. Pitman, Boston, 1984.

Crossrefs

Programs

  • Sage
    def a(n):
        if (n%2 == 0): return 5^n + 1 + 4*5^(n/2)
        elif ((floor(2*5^(n/2))%5 == 0) or (5^n-1).is_square()
            or (4*5^n-3).is_square() or (4*5^n-7).is_square()):
            if (frac(2*5^(n/2)) > ((sqrt(5)-1)/2)): return 5^n + 2*floor(2*5^(n/2))
            else: return 5^n + 2*floor(2*5^(n/2)) - 1
        else: return 5^n + 1 + 2*floor(2*5^(n/2))  # Robin Visser, Oct 01 2023

Extensions

More terms from Robin Visser, Oct 01 2023