cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A169888 Number of n-member subsets of 1..2n whose elements sum to a multiple of n.

Original entry on oeis.org

1, 2, 2, 8, 18, 52, 152, 492, 1618, 5408, 18452, 64132, 225432, 800048, 2865228, 10341208, 37568338, 137270956, 504171584, 1860277044, 6892335668, 25631327688, 95640829924, 357975249028, 1343650267288, 5056424257552, 19073789328752, 72108867620204
Offset: 0

Views

Author

N. J. A. Sloane, Jul 07 2010, based on a letter from Jean-Claude Babois

Keywords

Comments

This is twice A145855 (for n>0), which is the main entry for this problem.

Crossrefs

Programs

  • Maple
    with(combinat): t0:=[]; for n from 1 to 8 do ans:=0; t1:=choose(2*n,n); for i in t1 do s1:=add(i[j],j=1..n); if s1 mod n = 0 then ans:=ans+1; fi; od: t0:=[op(t0),ans]; od:
  • Mathematica
    a[n_] := Sum[(-1)^(n+d)*EulerPhi[n/d]*Binomial[2d, d]/n, {d, Divisors[n]}]; Table[a[n], {n, 1, 26}] (* Jean-François Alcover, Oct 22 2012, after T. D. Noe's program in A145855 *)
  • PARI
    a(n) = if(n==0, 1, sumdiv(n, d, (-1)^(n+d)*eulerphi(n/d)*binomial(2*d, d)/n)); \\ Altug Alkan, Aug 27 2018, after T. D. Noe at A145855

Formula

a(n) = A061865(2n,n). - Alois P. Heinz, Aug 28 2018
a(n) ~ 2^(2*n) / (sqrt(Pi) * n^(3/2)). - Vaclav Kotesovec, Mar 28 2023

Extensions

a(0)=1 prepended by Alois P. Heinz, Aug 26 2018