cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A169937 a(n) = binomial(m+n-1,n)^2 - binomial(m+n,n+1)*binomial(m+n-2,n-1) with m = 14.

Original entry on oeis.org

1, 91, 3185, 63700, 866320, 8836464, 71954064, 488259720, 2848181700, 14620666060, 67255063876, 281248448936, 1081724803600, 3863302870000, 12914469594000, 40680579221100, 121443493851225, 345280521733875, 938920716995625, 2451077240157000, 6162708489537600
Offset: 0

Views

Author

N. J. A. Sloane, Aug 28 2010

Keywords

Comments

13th column (and diagonal) of the triangle A001263. - Bruno Berselli, May 07 2012

References

  • S. Mukai, An Introduction to Invariants and Moduli, Cambridge, 2003; Prop. 8.4, case n=14.

Crossrefs

The expression binomial(m+n-1,n)^2-binomial(m+n,n+1)*binomial(m+n-2,n-1) for the values m = 2 through 14 produces the sequences A000012, A000217, A002415, A006542, A006857, A108679, A134288, A134289, A134290, A134291, A140925, A140935, A169937.
Cf. A002378.

Programs

  • Magma
    [(1/13)*Binomial(n+12,12)^2*(n+13)/(n+1): n in [0..20]]; // Bruno Berselli, Nov 09 2011
    
  • Maple
    f:=m->[seq( binomial(m+n-1,n)^2-binomial(m+n,n+1)*binomial(m+n-2,n-1), n=0..20)]; f(14);
  • Mathematica
    Table[Binomial[13+n,n]^2-Binomial[14+n,n+1]Binomial[12+n,n-1],{n,0,20}] (* Harvey P. Dale, Nov 09 2011 *)
  • PARI
    a(n)=binomial(n+12,12)^2*(n+13)/(n+1)/13 \\ Charles R Greathouse IV, Nov 09 2011

Formula

a(n) = (1/13)*A010965(n+12)^2*(n+13)/(n+1). - Bruno Berselli, Nov 09 2011
a(n) = Product_{i=1..12} A002378(n+i)/A002378(i). - Bruno Berselli, Sep 01 2016
From Amiram Eldar, Oct 19 2020: (Start)
Sum_{n>=0} 1/a(n) = 45997360927193/23100 - 201753552*Pi^2.
Sum_{n>=0} (-1)^n/a(n) = 16431564019/23100 - 72072*Pi^2. (End)