A169942 Number of Golomb rulers of length n.
1, 1, 3, 3, 5, 7, 13, 15, 27, 25, 45, 59, 89, 103, 163, 187, 281, 313, 469, 533, 835, 873, 1319, 1551, 2093, 2347, 3477, 3881, 5363, 5871, 8267, 9443, 12887, 14069, 19229, 22113, 29359, 32229, 44127, 48659, 64789, 71167, 94625, 105699, 139119, 151145, 199657
Offset: 1
Keywords
Examples
For n=2, there is one Golomb Ruler: {0,2}. For n=3, there are three: {0,3}, {0,1,3}, {0,2,3}. - _Tomas Boothby_, May 15 2012 From _Gus Wiseman_, May 16 2019: (Start) The a(1) = 1 through a(8) = 15 compositions such that every restriction to a subinterval has a different sum: (1) (2) (3) (4) (5) (6) (7) (8) (12) (13) (14) (15) (16) (17) (21) (31) (23) (24) (25) (26) (32) (42) (34) (35) (41) (51) (43) (53) (132) (52) (62) (231) (61) (71) (124) (125) (142) (143) (214) (152) (241) (215) (412) (251) (421) (341) (512) (521) (End)
Links
- Fausto A. C. Cariboni, Table of n, a(n) for n = 1..99
- T. Pham, Enumeration of Golomb Rulers (Master's thesis), San Francisco State U., 2011.
- Eric Weisstein's World of Mathematics, Golomb Ruler.
- Index entries for sequences related to carryless arithmetic
- Index entries for sequences related to Golomb rulers
Crossrefs
Programs
-
Mathematica
Table[Length[Select[Join@@Permutations/@IntegerPartitions[n],UnsameQ@@ReplaceList[#,{_,s__,_}:>Plus[s]]&]],{n,15}] (* Gus Wiseman, May 16 2019 *)
-
Sage
def A169942(n): R = QQ['x'] return sum(1 for c in cartesian_product([[0, 1]]*n) if max(R([1] + list(c) + [1])^2) == 2) [A169942(n) for n in range(1,8)] # Tomas Boothby, May 15 2012
Formula
Extensions
a(15)-a(30) from Nathaniel Johnston, Nov 12 2011
a(31)-a(50) from Tomas Boothby, May 15 2012
Comments