cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A059729 Carryless squares n X n base 10.

Original entry on oeis.org

0, 1, 4, 9, 6, 5, 6, 9, 4, 1, 100, 121, 144, 169, 186, 105, 126, 149, 164, 181, 400, 441, 484, 429, 466, 405, 446, 489, 424, 461, 900, 961, 924, 989, 946, 905, 966, 929, 984, 941, 600, 681, 664, 649, 626, 605, 686, 669, 644, 621, 500, 501, 504, 509, 506, 505
Offset: 0

Views

Author

Henry Bottomley, Feb 20 2001

Keywords

Examples

			a(87) is carryless sum of (6)400, (5)60, (5)60 and (4)9, i.e., 400+20+9 = 429.
		

Crossrefs

See A087019 (lunar squares) for another version.

Programs

  • PARI
    a(n) = fromdigits(Vec(Pol(digits(n))^2)%10) \\ Ruud H.G. van Tol, Dec 07 2022
  • Python
    def A059729(n):
        s = [int(d) for d in str(n)]
        l = len(s)
        t = [0]*(2*l-1)
        for i in range(l):
            for j in range(l):
                t[i+j] = (t[i+j] + s[i]*s[j]) % 10
        return int("".join(str(d) for d in t)) # Chai Wah Wu, Jun 29 2020
    

A169889 Numbers that are carryless squares in base 10.

Original entry on oeis.org

0, 1, 4, 5, 6, 9, 100, 105, 121, 126, 144, 149, 164, 169, 181, 186, 400, 405, 424, 429, 441, 446, 461, 466, 484, 489, 500, 501, 504, 505, 506, 509, 600, 605, 621, 626, 644, 649, 664, 669, 681, 686, 900, 905, 924, 929, 941, 946, 961, 966, 984, 989, 10000, 10005, 10104
Offset: 1

Views

Author

Keywords

Comments

A059729 sorted and duplicates removed.

Crossrefs

See A087019 (lunar squares) for another version.

A225107 Number of (4n-3)-digit 4th powers in carryless arithmetic mod 10.

Original entry on oeis.org

3, 24, 228, 2256, 22512, 225024, 2250048, 22500096, 225000192, 2250000384, 22500000768, 225000001536, 2250000003072, 22500000006144, 225000000012288, 2250000000024576, 22500000000049152, 225000000000098304, 2250000000000196608, 22500000000000393216
Offset: 1

Views

Author

Jon-Lark Kim, Apr 28 2013

Keywords

Examples

			For k=1, there are three one-digit 4th powers: 1^4=9^4=3^4=7^4=1, 2^4=8^4=4^4=6^4=6, 5^4=5.
		

References

  • J. Y. Lee and J.-L. Kim, Powers, Pythagorean triples, and Fermat's Last Theorem in carryless arithmetic mod 10, preprint, April, 18, 2013.

Crossrefs

Formula

a(k) = (1/4)*{9* 10^(k-1) - 2^(k-1)} + 2^(k-1).
a(n) = 12*a(n-1)-20*a(n-2). G.f.: -3*x*(4*x-1) / ((2*x-1)*(10*x-1)). - Colin Barker, May 11 2013

Extensions

More terms from Colin Barker, May 11 2013
Showing 1-3 of 3 results.