A170821 Let p = n-th prime; a(n) = smallest k >= 0 such that 4k == 3 mod p.
0, 2, 6, 9, 4, 5, 15, 18, 8, 24, 10, 11, 33, 36, 14, 45, 16, 51, 54, 19, 60, 63, 23, 25, 26, 78, 81, 28, 29, 96, 99, 35, 105, 38, 114, 40, 123, 126, 44, 135, 46, 144, 49, 50, 150, 159, 168, 171, 58, 59, 180, 61, 189, 65, 198, 68, 204, 70, 71, 213, 74, 231, 234, 79, 80, 249, 85, 261
Offset: 2
Links
- Robert Israel, Table of n, a(n) for n = 2..10000
- I. Anderson and D. A. Preece, Combinatorially fruitful properties of 3*2^(-1) and 3*2^(-2) modulo p, Discr. Math., 310 (2010), 312-324.
Programs
-
Maple
f:=proc(n) local b; for b from 0 to n-1 do if 4*b mod n = 3 then RETURN(b); fi; od: -1; end; [seq(f(ithprime(n)),n=2..100)]; # Gives wrong answer for n=2. # Alternative: f:= n -> 3/4 mod ithprime(n): map(f, [$2..100]); # Robert Israel, Dec 03 2018
-
Mathematica
a[n_] := If[n<3, 0, Module[{p=Prime[n], k=0}, While[Mod[4k, p] != 3, k++]; k]]; Array[a, 100,2] (* Amiram Eldar, Dec 03 2018 *)
-
PARI
a(n) = my(p=prime(n), k=0); while(Mod(4*k, p) != 3, k++); k; \\ Michel Marcus, Dec 03 2018
Formula
a(n) = (prime(n)+3)/4 if n is in A080147, (3*prime(n)+3)/4 if n is in A080148 (except for n=2). - Robert Israel, Dec 03 2018