cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A170842 G.f.: Product_{k>=1} (1 + 2x^(2^k-1) + 3x^(2^k)).

Original entry on oeis.org

1, 2, 3, 2, 7, 12, 9, 2, 7, 12, 13, 20, 45, 54, 27, 2, 7, 12, 13, 20, 45, 54, 31, 20, 45, 62, 79, 150, 243, 216, 81, 2, 7, 12, 13, 20, 45, 54, 31, 20, 45, 62, 79, 150, 243, 216, 85, 20, 45, 62, 79, 150, 243, 224, 133, 150, 259, 344, 537, 936, 1161, 810, 243, 2, 7, 12, 13, 20, 45
Offset: 0

Views

Author

N. J. A. Sloane, Jan 02 2010

Keywords

Comments

From Omar E. Pol, Apr 10 2021: (Start)
It appears that this is also an irregular triangle read by rows (see the example).
It appears that right border gives A000244.
It appears that row sums give A052934. (End)

Examples

			From _Omar E. Pol_, Apr 10 2021: (Start)
Written as an irregular triangle in which row lengths are A000079 the sequence begins:
1;
2, 3;
2, 7, 12, 9;
2, 7, 12, 13, 20, 45, 54, 27;
2, 7, 12, 13, 20, 45, 54, 31, 20, 45, 62, 79, 150, 243, 216, 81;
2, 7, 12, 13, 20, 45, 54, 31, 20, 45, 62, 79, 150, 243, 216, 85, 20, 45, 62, ...
(End)
		

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[Product[1+2x^(2^k-1)+3x^2^k,{k,10}],{x,0,70}],x] (* Harvey P. Dale, Apr 09 2021 *)
  • PARI
    D_x(N) = {my( x='x+O('x^N));Vec(prod(k=1,logint(N,2)+1,(1+2*x^(2^k-1)+3*x^(2^k))))}
    D_x((2^6)+1) \\ John Tyler Rascoe, Aug 16 2024