cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A151747 Except for boundary cases (n <= 3, j = 0, 1, 2^i-1), satisfies a(n) = a(2^i+j) = 2 a(j) + a(j+1), where n = 2^i + j, 0 <= j < 2^i .

Original entry on oeis.org

0, 1, 3, 5, 8, 9, 11, 17, 21, 15, 11, 18, 25, 29, 39, 54, 53, 27, 11, 18, 25, 29, 39, 55, 57, 41, 40, 61, 79, 97, 132, 160, 129, 51, 11, 18, 25, 29, 39, 55, 57, 41, 40, 61, 79, 97, 132, 161, 133, 65, 40, 61, 79, 97, 133, 167, 155, 122, 141, 201, 255, 326, 424, 448, 305, 99, 11, 18
Offset: 0

Views

Author

David Applegate, Jun 16 2009

Keywords

Comments

The boundary cases are covered by the following formulas:
a(n) = 2n-1 if n<=3.
a(n) = 1+(3*i+1)*2^(i-2) if j=0.
a(n) = 3+ 3*2^(i-1) if j= 1.
a(n) = 2*a(j)+a(j+1)-1 if j=2^i-1.

Examples

			If written as a triangle:
.0,
.1,
.3, 5,
.8, 9, 11, 17,
.21, 15, 11, 18, 25, 29, 39, 54,
.53, 27, 11, 18, 25, 29, 39, 55, 57, 41, 40, 61, 79, 97, 132, 160,
.129, 51, 11, 18, 25, 29, 39, 55, 57, 41, 40, 61, 79, 97, 132, 161, 133, 65, 40, 61, 79, 97, 133, 167, 155, 122, 141, 201, 255, 326, 424, 448,
.305, 99, 11, 18, 25, 29, 39, 55, 57, 41, 40, 61, 79, 97, 132, 161, 133, 65, 40, 61, 79, 97, 133, 167, 155, 122, 141, 201, 255, 326, 424, 449, 309, 113, 40, 61, 79, 97, 133, 167, 155, 122, 141, 201, 255, 326, 425, 455, 331, 170, 141, 201, 255, 327, 433, 489, 432, 385, 483, 657, 836, 1076, 1296, 1200,
.705, 195, 11, 18, 25, 29, 39, 55, 57, 41, 40, 61, 79, 97, 132, 161, 133, 65, 40, 61, 79, 97, 133, 167, 155, 122, 141, 201, 255, 326, 424, 449, 309, 113, 40, 61, 79, 97, 133, 167, 155, 122, 141, 201, 255, 326, 425, 455, 331, 170, 141, 201, 255, 327, 433, 489, 432, 385, 483, 657, 836, 1076, 1296, 1201, 709, 209, 40, 61, 79, 97, 133, 167, 155, 122, 141, 201, 255, 326, 425, 455, 331, 170, 141, 201, 255, 327, 433, 489, 432, 385, 483, 657, 836, 1076, 1297, 1207, 731, 266, 141, 201, 255, 327, 433, 489, 432, 385, 483, 657, 836, 1077, 1305, 1241, 832, 481, 483, 657, 837, 1087, 1355, 1410, 1249, 1253, 1623, ...
then the rows (omitting the first two terms of each row) converge to A151748.
		

Crossrefs

The first column gives A170881.

Programs

  • Maple
    A151747 := proc(n) option remember; local i, j;
    if (n <= 0) then
      0;
    elif (n <= 3) then
      2*n-1;
    else
       i := floor(log(n)/log(2));
       j := n - 2^i;
       if (j = 0) then (3*i+1)*2^(i-2)+1;
       elif (j = 1) then 3*2^(i-1)+3;
       elif (j = 2^i-1) then 2*procname(j)+procname(j+1)-1;
       else 2*procname(j)+procname(j+1);
       end if;
    end if;
    end proc;
  • Mathematica
    a[n_] := a[n] = Module[{i, j}, Which[n <= 0, 0, n <= 3, 2n-1, True, i = Floor[Log2[n]]; j = n-2^i; Which[j == 0, (3i+1)*2^(i-2)+1, j == 1, 3*2^(i-1)+3, j == 2^i-1, 2a[j] + a[j+1] - 1,True, 2a[j] + a[j+1]]]];
    Table[a[n], {n, 0, 67}] (* Jean-François Alcover, Aug 04 2022, from Maple code *)
Showing 1-1 of 1 results.