cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A151748 If the first two terms of the rows of the triangle in A151747 are omitted, this is what the rows converge to.

Original entry on oeis.org

11, 18, 25, 29, 39, 55, 57, 41, 40, 61, 79, 97, 132, 161, 133, 65, 40, 61, 79, 97, 133, 167, 155, 122, 141, 201, 255, 326, 424, 449, 309, 113, 40, 61, 79, 97, 133, 167, 155, 122, 141, 201, 255, 326, 425, 455, 331, 170, 141, 201, 255, 327, 433, 489, 432, 385, 483, 657, 836
Offset: 0

Views

Author

N. J. A. Sloane, Jun 16 2009, Jun 17 2009

Keywords

A170879 Partial sums of A151747.

Original entry on oeis.org

0, 1, 4, 9, 17, 26, 37, 54, 75, 90, 101, 119, 144, 173, 212, 266, 319, 346, 357, 375, 400, 429, 468, 523, 580, 621, 661, 722, 801, 898, 1030, 1190, 1319, 1370, 1381, 1399, 1424, 1453, 1492, 1547, 1604, 1645, 1685, 1746, 1825, 1922, 2054, 2215, 2348, 2413, 2453
Offset: 0

Views

Author

N. J. A. Sloane, Jan 07 2010

Keywords

A151725 Number of ON states after n generations of cellular automaton rule described by the rulestring B1/S012345678.

Original entry on oeis.org

0, 1, 9, 13, 33, 37, 57, 77, 121, 125, 145, 165, 209, 237, 297, 373, 465, 469, 489, 509, 553, 581, 641, 717, 809, 837, 897, 981, 1097, 1213, 1409, 1645, 1833, 1837, 1857, 1877, 1921, 1949, 2009, 2085, 2177, 2205, 2265, 2349, 2465, 2581, 2777, 3013
Offset: 0

Views

Author

David Applegate and N. J. A. Sloane, Jun 13 2009

Keywords

Comments

A cell is turned ON if exactly one of its eight neighbors is ON. An ON cell remains ON forever.
We start with a single ON cell.
Analog of A147562, which is the case when each cell has only four neighbors.
The equivalent Mathematica cellular automaton is obtained with neighborhood weights {{1,1,1},{1,9,1},{1,1,1}}, rule number 261634, and starting configuration {{1}}. [John W. Layman, Sep 11 2009]
Observation: Visual pattern similar to the toothpick structure (see A139250). [Omar E. Pol, Dec 14 2009]

Crossrefs

See A151731, A151732, A151733, A151734 for the same CA except that two neighbors must be ON for a cell to turn ON.

Programs

  • Mathematica
    RasterGraphics[state_?MatrixQ, colors_Integer : 2, opts___] := Graphics[Raster[ Reverse[1 - state/(colors - 1)]], AspectRatio -> (AspectRatio /. {opts} /. AspectRatio -> Automatic), Frame -> True, FrameTicks -> None, GridLines -> None]; wt = {{1,1,1}, {1,9,1}, {1,1,1}}; rule= 261634; init={{1}}; Show[GraphicsArray[Map[RasterGraphics, CellularAutomaton[{rule, {2, wt}, {1, 1}}, {init, 0}, 9, -10]]]];nx = 100; ca = CellularAutomaton[{rule, {2, wt}, {1, 1}}, {init, 0}, nx - 1, -nx]; a = Table[Total[ca[[i]], 2], {i, 1, nx}] (* John W. Layman, Sep 11 2009 *)
    A151725[0] = 0; A151725[n_] := Total[CellularAutomaton[{174766, {2, {{2, 2, 2}, {2, 1, 2}, {2, 2, 2}}}, {1, 1}}, {{{1}}, 0}, {{{n - 1}}}], 2]; Array[A151725, 48, 0] (* JungHwan Min, Sep 01 2016 *)
    A151725L[n_] := Prepend[Total[#, 2] & /@ CellularAutomaton[{174766, {2, {{2, 2, 2}, {2, 1, 2}, {2, 2, 2}}}, {1, 1}}, {{{1}}, 0}, n - 1], 0]; A151725L[47] (* JungHwan Min, Sep 01 2016 *)

Formula

For a recurrence see the Applegate-Pol-Sloane paper.

Extensions

Definition clarified by SiYang Hu, May 10 2025

A151728 A151727/4.

Original entry on oeis.org

1, 5, 5, 11, 7, 15, 19, 23, 7, 15, 21, 29, 29, 49, 59, 47, 7, 15, 21, 29, 29, 49, 61, 53, 29, 51, 71, 87, 107, 157, 163, 95, 7, 15, 21, 29, 29, 49, 61, 53, 29, 51, 71, 87, 107, 157, 165, 101, 29, 51, 71, 87, 107, 159, 175, 135, 109, 173, 229, 281, 371, 477
Offset: 0

Views

Author

N. J. A. Sloane, Jun 14 2009

Keywords

Crossrefs

Cf. A151727, A151737, A151747, A170880. Equals 2*A151729 + 1.

A170881 a(0)=0; thereafter a(n) = (3*n+1)*2^(n-2)+1.

Original entry on oeis.org

0, 1, 3, 8, 21, 53, 129, 305, 705, 1601, 3585, 7937, 17409, 37889, 81921, 176129, 376833, 802817, 1703937, 3604481, 7602177, 15990785, 33554433, 70254593, 146800641, 306184193, 637534209, 1325400065, 2751463425, 5704253441, 11811160065, 24427626497, 50465865729
Offset: 0

Views

Author

N. J. A. Sloane, Jan 07 2010

Keywords

Crossrefs

Essentially the first column of the triangular array in A151747.
Partial sums of A098156.

Programs

  • Mathematica
    Join[{0,1},Table[(3n+1)2^(n-2)+1,{n,40}]] (* Harvey P. Dale, Nov 26 2023 *)

Formula

From Chai Wah Wu, Apr 15 2025: (Start)
a(n) = 5*a(n-1) - 8*a(n-2) + 4*a(n-3) for n > 4.
G.f.: x*(-x^3 - x^2 + 2*x - 1)/((x - 1)*(2*x - 1)^2). (End)
E.g.f.: (4*exp(x) - 3 + exp(2*x)*(3*x - 1))/4. - Stefano Spezia, Apr 15 2025

Extensions

Zero prepended by Harvey P. Dale, Nov 26 2023
Showing 1-5 of 5 results.