cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 15 results. Next

A151726 First differences of A151725.

Original entry on oeis.org

0, 1, 8, 4, 20, 4, 20, 20, 44, 4, 20, 20, 44, 28, 60, 76, 92, 4, 20, 20, 44, 28, 60, 76, 92, 28, 60, 84, 116, 116, 196, 236, 188, 4, 20, 20, 44, 28, 60, 76, 92, 28, 60, 84, 116, 116, 196, 236, 188, 28, 60, 84, 116, 116, 196, 244, 212, 116, 204, 284, 348, 428
Offset: 0

Views

Author

David Applegate and N. J. A. Sloane, Jun 13 2009

Keywords

Examples

			May be written as a triangle:
0,
1,
8,
4,20,
4,20,20,44,
4,20,20,44,28,60,76,92,
4,20,20,44,28,60,76,92,28,60,84,116,116,196,236,188,
4,20,20,44,28,60,76,92,28,60,84,116,116,196,236,188,28,60,84,116,116,196,244,212,116,204,...
The rows converge to A151727.
		

Crossrefs

Cf. A139251. [From Omar E. Pol, Dec 14 2009]

Formula

For a recurrence see the Applegate-Pol-Sloane paper.

A151735 a(0)=0, a(1)=1; for n>21, a(n) = (A151725(n)+7)/4.

Original entry on oeis.org

0, 1, 4, 5, 10, 11, 16, 21, 32, 33, 38, 43, 54, 61, 76, 95, 118, 119, 124, 129, 140, 147, 162, 181, 204, 211, 226, 247, 276, 305, 354, 413, 460, 461, 466, 471, 482, 489, 504, 523, 546, 553, 568, 589, 618, 647, 696, 755, 802, 809, 824, 845, 874, 903, 952, 1013, 1066, 1095, 1146
Offset: 0

Views

Author

N. J. A. Sloane, Jun 15 2009

Keywords

Comments

The number of cells after n generations in one quadrant of the CA in A151725.
The first differences (starting at a(2)) give A151737.

Crossrefs

Cf. A151746.

A151723 Total number of ON states after n generations of cellular automaton based on hexagons.

Original entry on oeis.org

0, 1, 7, 13, 31, 37, 55, 85, 127, 133, 151, 181, 235, 289, 331, 409, 499, 505, 523, 553, 607, 661, 715, 817, 967, 1069, 1111, 1189, 1327, 1489, 1603, 1789, 1975, 1981, 1999, 2029, 2083, 2137, 2191, 2293, 2443, 2545, 2599, 2701, 2875, 3097, 3295
Offset: 0

Views

Author

David Applegate and N. J. A. Sloane, Jun 13 2009

Keywords

Comments

Analog of A151725, but here we are working on the triangular lattice (or the A_2 lattice) where each hexagonal cell has six neighbors.
A cell is turned ON if exactly one of its six neighbors is ON. An ON cell remains ON forever.
We start with a single ON cell.
It would be nice to find a recurrence for this sequence!
Has a behavior similar to A182840 and possibly to A182632. - Omar E. Pol, Jan 15 2016

References

  • S. M. Ulam, On some mathematical problems connected with patterns of growth of figures, pp. 215-224 of R. E. Bellman, ed., Mathematical Problems in the Biological Sciences, Proc. Sympos. Applied Math., Vol. 14, Amer. Math. Soc., 1962 (see Example 6, page 224).

Crossrefs

Programs

  • Mathematica
    A151723[0] = 0; A151723[n_] := Total[CellularAutomaton[{10926, {2, {{2, 2, 0}, {2, 1, 2}, {0, 2, 2}}}, {1, 1}}, {{{1}}, 0}, {{{n - 1}}}], 2]; Array[A151723, 47, 0](* JungHwan Min, Sep 01 2016 *)
    A151723L[n_] := Prepend[Total[#, 2] & /@ CellularAutomaton[{10926, {2, {{2, 2, 0}, {2, 1, 2}, {0, 2, 2}}}, {1, 1}}, {{{1}}, 0}, n - 1], 0]; A151723L[46] (* JungHwan Min, Sep 01 2016 *)

Formula

a(n) = 6*A169780(n) - 6*n + 1 (this is simply the definition of A169780).
a(n) = 1 + 6*A169779(n-2), n >= 2. - Omar E. Pol, Mar 19 2015
It appears that a(n) = a(n-2) + 3*(A256537(n) - 1), n >= 3. - Omar E. Pol, Apr 04 2015

Extensions

Edited by N. J. A. Sloane, Jan 10 2010

A160414 Number of "ON" cells at n-th stage in simple 2-dimensional cellular automaton (same as A160410, but a(1) = 1, not 4).

Original entry on oeis.org

0, 1, 9, 21, 49, 61, 97, 133, 225, 237, 273, 309, 417, 453, 561, 669, 961, 973, 1009, 1045, 1153, 1189, 1297, 1405, 1729, 1765, 1873, 1981, 2305, 2413, 2737, 3061, 3969, 3981, 4017, 4053, 4161, 4197, 4305, 4413, 4737, 4773, 4881, 4989, 5313, 5421, 5745
Offset: 0

Views

Author

Omar E. Pol, May 20 2009

Keywords

Comments

The structure has a fractal behavior similar to the toothpick sequence A139250.
First differences: A161415, where there is an explicit formula for the n-th term.
For the illustration of a(24) = 1729 (the Hardy-Ramanujan number) see the Links section.

Examples

			From _Omar E. Pol_, Sep 24 2015: (Start)
With the positive terms written as an irregular triangle in which the row lengths are the terms of A011782 the sequence begins:
1;
9;
21,    49;
61,    97,  133,  225;
237,  273,  309,  417,  453, 561,  669,  961;
...
Right border gives A060867.
This triangle T(n,k) shares with the triangle A256530 the terms of the column k, if k is a power of 2, for example both triangles share the following terms: 1, 9, 21, 49, 61, 97, 225, 237, 273, 417, 961, etc.
.
Illustration of initial terms, for n = 1..10:
.       _ _ _ _                       _ _ _ _
.      |  _ _  |                     |  _ _  |
.      | |  _|_|_ _ _ _ _ _ _ _ _ _ _|_|_  | |
.      | |_|  _ _     _ _   _ _     _ _  |_| |
.      |_ _| |  _|_ _|_  | |  _|_ _|_  | |_ _|
.          | |_|  _ _  |_| |_|  _ _  |_| |
.          |   | |  _|_|_ _ _|_|_  | |   |
.          |  _| |_|  _ _   _ _  |_| |_  |
.          | | |_ _| |  _|_|_  | |_ _| | |
.          | |_ _| | |_|  _  |_| | |_ _| |
.          |  _ _  |  _| |_| |_  |  _ _  |
.          | |  _|_| | |_ _ _| | |_|_  | |
.          | |_|  _| |_ _| |_ _| |_  |_| |
.          |   | | |_ _ _ _ _ _ _| | |   |
.          |  _| |_ _| |_   _| |_ _| |_  |
.       _ _| | |_ _ _ _| | | |_ _ _ _| | |_ _
.      |  _| |_ _|   |_ _| |_ _|   |_ _| |_  |
.      | | |_ _ _ _ _ _ _ _ _ _ _ _ _ _ _| | |
.      | |_ _| |                     | |_ _| |
.      |_ _ _ _|                     |_ _ _ _|
.
After 10 generations there are 273 ON cells, so a(10) = 273.
(End)
		

Crossrefs

Programs

  • Maple
    read("transforms") ; isA000079 := proc(n) if type(n,'even') then nops(numtheory[factorset](n)) = 1 ; else false ; fi ; end proc:
    A048883 := proc(n) 3^wt(n) ; end proc:
    A161415 := proc(n) if n = 1 then 1; elif isA000079(n) then 4*A048883(n-1)-2*n ; else 4*A048883(n-1) ; end if; end proc:
    A160414 := proc(n) add( A161415(k),k=1..n) ; end proc: seq(A160414(n),n=0..90) ; # R. J. Mathar, Oct 16 2010
  • Mathematica
    A160414list[nmax_]:=Accumulate[Table[If[n<2,n,4*3^DigitCount[n-1,2,1]-If[IntegerQ[Log2[n]],2n,0]],{n,0,nmax}]];A160414list[100] (* Paolo Xausa, Sep 01 2023, after R. J. Mathar *)
  • PARI
    my(s=-1, t(n)=3^norml2(binary(n-1))-if(n==(1<Altug Alkan, Sep 25 2015

Formula

a(n) = 1 + 4*A219954(n), n >= 1. - M. F. Hasler, Dec 02 2012
a(2^k) = (2^(k+1) - 1)^2. - Omar E. Pol, Jan 05 2013

Extensions

Edited by N. J. A. Sloane, Jun 15 2009 and Jul 13 2009
More terms from R. J. Mathar, Oct 16 2010

A161644 Number of ON states after n generations of cellular automaton based on triangles.

Original entry on oeis.org

0, 1, 4, 10, 16, 22, 34, 52, 64, 70, 82, 106, 136, 160, 190, 232, 256, 262, 274, 298, 328, 358, 400, 466, 532, 568, 598, 658, 742, 814, 892, 988, 1036, 1042, 1054, 1078, 1108, 1138, 1180, 1246, 1312, 1354, 1396, 1474, 1588, 1702, 1816, 1966, 2104, 2164, 2194
Offset: 0

Views

Author

David Applegate and N. J. A. Sloane, Jun 15 2009

Keywords

Comments

Analog of A151723 and A151725, but here we are working on the hexagonal net where each triangular cell has three neighbors (meeting along its edges). A cell is turned ON if exactly one of its three neighbors is ON. An ON cell remains ON forever.
We start with a single ON cell.
There is a dual version where the triangular cells meet vertex-to-vertex. The counts are the same: the two versions are isomorphic. Reed (1974) uses the vertex-to-vertex version. See the two Sloane "Illustration" links below to compare the two versions.
It appears that a(n) is also the number of polytoothpicks added in a toothpick structure formed by V-toothpicks but starting with a Y-toothpick: a(n) = a(n-1)+(A182632(n)-A182632(n-1))/2. (Checked up to n=39.) - Omar E. Pol, Dec 07 2010 and R. J. Mathar, Dec 17 2010
It appears that the behavior is similar to A161206. - Omar E. Pol, Jan 15 2016
It would be nice to have a formula or recurrence.
If new triangles are required to always move outwards we get A295559 and A295560.
From Paul Cousin, May 23 2025: (Start)
This is ETA rule 242 (11110010 in binary):
-----------------------------------------------
|state of the cell |1|1|1|1|0|0|0|0|
|sum of the neighbors' states |3|2|1|0|3|2|1|0|
|cell's next state |1|1|1|1|0|0|1|0|
----------------------------------------------- (End)

References

  • R. Reed, The Lemming Simulation Problem, Mathematics in School, 3 (#6, Nov. 1974), front cover and pp. 5-6. [Describes the dual structure where new triangles are joined at vertices rather than edges.]
  • S. Ulam, On some mathematical problems connected with patterns of growth of figures, pp. 215-224 of R. E. Bellman, ed., Mathematical Problems in the Biological Sciences, Proc. Sympos. Applied Math., Vol. 14, Amer. Math. Soc., 1962. See Example 3.

Crossrefs

Programs

  • PARI
    \\ See Links section.

Formula

a(n) = (A182632(n) - 1)/2, n >= 1. - Omar E. Pol, Mar 07 2013

Extensions

Edited by N. J. A. Sloane, Jan 10 2010 and Nov 27 2017

A319018 Number of ON cells after n generations of two-dimensional automaton based on knight moves (see Comments for definition).

Original entry on oeis.org

0, 1, 9, 17, 57, 65, 121, 145, 265, 273, 329, 377, 617, 657, 865, 921, 1201, 1209, 1265, 1313, 1553, 1617, 2001, 2121, 2689, 2745, 3009, 3153, 3841, 3953, 4513, 4649, 5297, 5305, 5361, 5409, 5649, 5713, 6097, 6233, 6881, 6953, 7353, 7585, 8713, 8913, 9961
Offset: 0

Views

Author

Rémy Sigrist, Sep 08 2018

Keywords

Comments

The cells are the squares of the standard square grid.
Cells are either OFF or ON, once they are ON they stay ON forever.
Each cell has 8 neighbors, the cells that are a knight's move away.
We begin in generation 1 with a single ON cell.
A cell is turned ON at generation n+1 if it has exactly one ON neighbor at generation n.
(Since cells stay ON, an equivalent definition is that a cell is turned ON at generation n+1 if it has exactly one neighbor that has been turned ON at some earlier generation. - N. J. A. Sloane, Dec 19 2018)
This sequence has similarities with A151725: here we use knight moves, there we use king moves.
This is a knight's-move version of the Ulam-Warburton cellular automaton (see A147562). - N. J. A. Sloane, Dec 21 2018
The structure has dihedral D_8 symmetry (quarter-turn rotations plus reflections, which generate the dihedral group D_8 of order 8), so A319019 is a multiple of 8 (compare A322050). - N. J. A. Sloane, Dec 16 2018
From Omar E. Pol, Dec 16 2018: (Start)
For n >> 1 (for example: n = 257) the structure of this sequence is similar to the structure of both A194270 and of A220500, the D-toothpick cellular automata of the second kind and of the third kind respectively. The animations of both CAs are in the Applegate's movie version.
Also, the graph of A319018 is a bit similar to the graph of A245540, which is essentially a 45-degree-3D-wedge of A245542 (a pyramid) which is the partial sums of A160239 (Fredkin's replicator). See "Plot 2": A319018 vs. A245540. (End)
The conjecture that A322050(2^k+1)=1 also suggests a fractal geometry. Let P_k be the associated set of eight points. It appears that P_k may be written as the intersection of four fixed lines, y = +-2*x and x = +-2*y, with a circle, x^2 + y^2 = 5*4^k (see linked image "Log-Periodic Coloring"). - Bradley Klee, Dec 16 2018
In many of these toothpick or cellular automata sequences it is common to see graphs which look like some version of the famous blancmange curve (also known as the Takagi curve). I expect that is what we are seeing when we look at the graph of A322049, although we probably need to go a lot further out before the true shape becomes apparent. - N. J. A. Sloane, Dec 17 2018
The graph of A322049 (related to first differences of this sequence) appears to have rather a self-similar structure which repeats at powers of 2, and more specifically at 2^10 = 1024. There is no central symmetry or continuity, which are characteristic properties of the blancmange curve. - M. F. Hasler, Dec 28 2018
The 8 points added in generation n = 2^k + 1 are P_k = 2^k*K where K = {(+-2, +-1), (+-1, +-2)} is the set of the initial 8 knight moves. So P_k is indeed the intersection of the rays of slope +-1/2 resp. +-2 and a circle of radius 2^k*sqrt(5). In the subsequent generation n = 2^k + 2, the new cells switched on are exactly the 7 "new" knight move neighbors of these 8 cells, (P_k + K) \ (2^k - 1)*K. The 8th neighbor, lying one knight move closer to the origin, has been switched on in generation 2^k, together with an octagonal "wall" consisting of every other cell on horizontal and vertical segments between these points (2^k - 1)*K, and all cells on the diagonal segments between these points, as well as 2 more diagonals just next to these (on the inner side) and shorter by 2 cells (so they are empty for k = 1). This yields 4*(2 + (2^k - 2)*(1+3)) new ON cells in generation 2^k, plus 8*(2^(k-1) - 2) more new ON cells on horizontal, vertical and diagonal lines 4 units closer to the origin for k > 2, and similar additional terms for k > 4 etc. - M. F. Hasler, Dec 28 2018

Crossrefs

Cf. A151725, A319019 (first differences).
For further analysis see A322048, A322049, A322050, A322051.
See A322055, A322056 for a variation.

Programs

Formula

No formula or recurrence is presently known. See A322049 for a promising attack. - N. J. A. Sloane, Dec 16 2018
a(n) = Sum_{k=1..n} A319019(n) = 1 + 8*Sum_{k=2..n} A322050(n) for n >= 1. In particular, a(n) - 1 is divisible by 8 for all n >= 1. - M. F. Hasler, Dec 28 2018

Extensions

Deleted an incorrect illustration. - N. J. A. Sloane, Dec 17 2018

A151731 Number of ON states after n generations of cellular automaton based on square grid with each cell adjacent to its eight neighbors.

Original entry on oeis.org

0, 2, 6, 14, 20, 32, 40, 54, 70, 94, 108, 128, 152, 172, 188, 224, 256, 300, 344, 380, 416, 464, 504, 552, 598, 658, 728, 772, 816, 880, 940, 1000, 1076, 1148, 1212, 1276, 1360, 1454, 1556, 1624, 1708, 1796, 1912, 2004, 2124, 2250, 2376, 2480
Offset: 0

Views

Author

N. J. A. Sloane, Jun 15 2009

Keywords

Comments

A cell is turned ON if exactly two of its eight neighbors is ON. An ON cell remains ON forever.
We start with two edge-adjacent ON cells.

Crossrefs

See A151725, A151726 for the same CA except that exactly one neighbor must be ON for a cell to turn ON.

Programs

  • PARI
    \\ See Links section.

A151747 Except for boundary cases (n <= 3, j = 0, 1, 2^i-1), satisfies a(n) = a(2^i+j) = 2 a(j) + a(j+1), where n = 2^i + j, 0 <= j < 2^i .

Original entry on oeis.org

0, 1, 3, 5, 8, 9, 11, 17, 21, 15, 11, 18, 25, 29, 39, 54, 53, 27, 11, 18, 25, 29, 39, 55, 57, 41, 40, 61, 79, 97, 132, 160, 129, 51, 11, 18, 25, 29, 39, 55, 57, 41, 40, 61, 79, 97, 132, 161, 133, 65, 40, 61, 79, 97, 133, 167, 155, 122, 141, 201, 255, 326, 424, 448, 305, 99, 11, 18
Offset: 0

Views

Author

David Applegate, Jun 16 2009

Keywords

Comments

The boundary cases are covered by the following formulas:
a(n) = 2n-1 if n<=3.
a(n) = 1+(3*i+1)*2^(i-2) if j=0.
a(n) = 3+ 3*2^(i-1) if j= 1.
a(n) = 2*a(j)+a(j+1)-1 if j=2^i-1.

Examples

			If written as a triangle:
.0,
.1,
.3, 5,
.8, 9, 11, 17,
.21, 15, 11, 18, 25, 29, 39, 54,
.53, 27, 11, 18, 25, 29, 39, 55, 57, 41, 40, 61, 79, 97, 132, 160,
.129, 51, 11, 18, 25, 29, 39, 55, 57, 41, 40, 61, 79, 97, 132, 161, 133, 65, 40, 61, 79, 97, 133, 167, 155, 122, 141, 201, 255, 326, 424, 448,
.305, 99, 11, 18, 25, 29, 39, 55, 57, 41, 40, 61, 79, 97, 132, 161, 133, 65, 40, 61, 79, 97, 133, 167, 155, 122, 141, 201, 255, 326, 424, 449, 309, 113, 40, 61, 79, 97, 133, 167, 155, 122, 141, 201, 255, 326, 425, 455, 331, 170, 141, 201, 255, 327, 433, 489, 432, 385, 483, 657, 836, 1076, 1296, 1200,
.705, 195, 11, 18, 25, 29, 39, 55, 57, 41, 40, 61, 79, 97, 132, 161, 133, 65, 40, 61, 79, 97, 133, 167, 155, 122, 141, 201, 255, 326, 424, 449, 309, 113, 40, 61, 79, 97, 133, 167, 155, 122, 141, 201, 255, 326, 425, 455, 331, 170, 141, 201, 255, 327, 433, 489, 432, 385, 483, 657, 836, 1076, 1296, 1201, 709, 209, 40, 61, 79, 97, 133, 167, 155, 122, 141, 201, 255, 326, 425, 455, 331, 170, 141, 201, 255, 327, 433, 489, 432, 385, 483, 657, 836, 1076, 1297, 1207, 731, 266, 141, 201, 255, 327, 433, 489, 432, 385, 483, 657, 836, 1077, 1305, 1241, 832, 481, 483, 657, 837, 1087, 1355, 1410, 1249, 1253, 1623, ...
then the rows (omitting the first two terms of each row) converge to A151748.
		

Crossrefs

The first column gives A170881.

Programs

  • Maple
    A151747 := proc(n) option remember; local i, j;
    if (n <= 0) then
      0;
    elif (n <= 3) then
      2*n-1;
    else
       i := floor(log(n)/log(2));
       j := n - 2^i;
       if (j = 0) then (3*i+1)*2^(i-2)+1;
       elif (j = 1) then 3*2^(i-1)+3;
       elif (j = 2^i-1) then 2*procname(j)+procname(j+1)-1;
       else 2*procname(j)+procname(j+1);
       end if;
    end if;
    end proc;
  • Mathematica
    a[n_] := a[n] = Module[{i, j}, Which[n <= 0, 0, n <= 3, 2n-1, True, i = Floor[Log2[n]]; j = n-2^i; Which[j == 0, (3i+1)*2^(i-2)+1, j == 1, 3*2^(i-1)+3, j == 2^i-1, 2a[j] + a[j+1] - 1,True, 2a[j] + a[j+1]]]];
    Table[a[n], {n, 0, 67}] (* Jean-François Alcover, Aug 04 2022, from Maple code *)

A151728 A151727/4.

Original entry on oeis.org

1, 5, 5, 11, 7, 15, 19, 23, 7, 15, 21, 29, 29, 49, 59, 47, 7, 15, 21, 29, 29, 49, 61, 53, 29, 51, 71, 87, 107, 157, 163, 95, 7, 15, 21, 29, 29, 49, 61, 53, 29, 51, 71, 87, 107, 157, 165, 101, 29, 51, 71, 87, 107, 159, 175, 135, 109, 173, 229, 281, 371, 477
Offset: 0

Views

Author

N. J. A. Sloane, Jun 14 2009

Keywords

Crossrefs

Cf. A151727, A151737, A151747, A170880. Equals 2*A151729 + 1.

A151776 Number of ON states after n generations of cellular automaton based on f.c.c. lattice with each cell adjacent to its twelve neighbors.

Original entry on oeis.org

0, 1, 13, 25, 109, 121, 205, 385, 805, 817, 901, 1081, 1645, 2185, 2605, 3721, 5749, 5857, 5941, 6121, 6685, 7225, 7789, 9289, 12565, 14401, 14821, 15937, 18877, 23257, 25981, 32233, 42445, 43729, 44101, 44521
Offset: 0

Views

Author

N. J. A. Sloane, Jun 24 2009

Keywords

Comments

We take the f.c.c. lattice to consist of the points (X,Y,Z) of Z^3 with X+Y+Z even.
We start with a single ON cell at the origin.
A cell is turned ON if exactly one of its twelve neighbors is ON. An ON cell remains ON forever.
Analog of A147562, which is corresponding sequence for the square lattice Z^2.
If we just look at what happens in the (X,Y)-plane, we get A147552 and A151836.

Crossrefs

Extensions

Terms after a(30) from Nathaniel Johnston, Mar 27 2011
Showing 1-10 of 15 results. Next