Original entry on oeis.org
0, 1, 8, 8, 40, 8, 56, 24, 120, 8, 56, 48, 240, 40, 208, 56, 280, 8, 56, 48, 240, 64, 384, 120, 568, 56, 264, 144, 688, 112, 560, 136, 648, 8, 56, 48, 240, 64, 384, 136, 648, 72, 400, 232, 1128, 200, 1048, 240, 1216, 48, 216, 160, 768, 200, 1176, 352, 1664
Offset: 0
-
A319019_upto(N,S=[],K=[[t\5-2,t%5-2]|t<-digits(6888528048,25)])={ vector(N,n, #N=if(n>1, S=setunion(S,N); N=vecsort(concat([[Vecsmall(Vec(n)+k)|k<-K]|n<-N])); S=setunion(Set(vecextract(N, select(i->N[i-1]==N[i],[2..#N]))),S);setminus(Set(N),S),[[0,0]]))} \\ Increase stack size with allocatemem() for N > 86. - M. F. Hasler, Dec 27 2018
-
A319019(n)=sum(i=2,n,A322050(i))*8+(n>0) \\ M. F. Hasler, Dec 28 2018
Original entry on oeis.org
1, 13, 25, 109, 121, 193, 325, 493, 529, 661, 829, 1129, 1189, 1405, 1657, 2101, 2149, 2281, 2533, 3133, 3337, 3709, 4309, 4909, 5065, 5449, 5917, 6757, 6877, 7381, 7873, 8845, 8893, 9025, 9277, 9877, 10165, 10849, 11737
Offset: 0
- Bradley Klee, Log-Periodic Coloring over Arrowed Half Hexagon tiling.
- Bradley Klee, Log-Periodic Coloring to Stage 64.
- Bradley Klee, T_n Tree Structure, n=1,2,3,4.
- Bradley Klee, Limit-Periodic Tilings, Wolfram Demonstrations Project (2015).
- S. M. Ulam, On some mathematical problems connected with patterns of growth of figures, pp. 216 of R. E. Bellman, ed., Mathematical Problems in the Biological Sciences, Proc. Sympos. Applied Math., Vol. 14, Amer. Math. Soc., 1962 [Annotated scanned copy]
-
HexStar=2*Sqrt[3]*{Cos[#*Pi/3+Pi/6],Sin[#*Pi/3+Pi/6]}&/@Range[0,5];
MoveSet=Join[2*HexStar+RotateRight[HexStar],2*HexStar+RotateLeft[HexStar]];
Clear@Pts;Pts[0] = {{0, 0}};
Pts[n_]:=Pts[n]=With[{pts=Pts[n-1]},Union[pts,Cases[Tally[Flatten[pts/.{x_,y_}:> Evaluate[{x,y}+#&/@MoveSet],1]],{x_,1}:>x]]];Length[Pts[#]]&/@Range[0,32]
A322049
When A322050 is displayed as a triangle the rows converge to this sequence.
Original entry on oeis.org
1, 7, 6, 30, 8, 48, 17, 81, 9, 50, 29, 145, 27, 145, 37, 189, 8, 45, 34, 166, 45, 252, 73, 342, 37, 179, 89, 425, 74, 374, 86, 412, 8, 49, 33, 165, 46, 270, 91, 436, 50, 277, 149, 734, 122, 630, 144, 723, 38, 179, 101, 488, 130, 753, 209, 990, 90, 450, 210, 991
Offset: 0
Original entry on oeis.org
1, 1, 5, 1, 7, 3, 15, 1, 7, 6, 30, 5, 26, 7, 35, 1, 7, 6, 30, 8, 48, 15, 71, 7, 33, 18, 86, 14, 70, 17, 81, 1, 7, 6, 30, 8, 48, 17, 81, 9, 50, 29, 141, 25, 131, 30, 152, 6, 27, 20, 96, 25, 147, 44, 208, 17, 81, 42, 198, 32, 158, 37, 173, 1, 7, 6, 30, 8
Offset: 2
This sequence may be redrawn as an array with rows of lengths 1, 2, 4, 8, 16, ...:
1,
1, 5,
1, 7, 3, 15,
1, 7, 6, 30, 5, 26, 7, 35,
1, 7, 6, 30, 8, 48, 15, 71, 7, 33, 18, 86, 14, 70, 17, 81,
1, 7, 6, 30, 8, 48, 17, 81, 9, 50, 29, 141, 25, 131, 30, 152, 6, 27, 20, 96, 25, 147, 44, 208, 17, 81, 42, 198, 32, 158, 37, 173,
...
See A322048 for the final element of these rows; see A322049 for the sequence to which the rows converge, with additional formulas for the n-th element of each (sufficiently long) row. - _M. F. Hasler_, Dec 18 2018
A322048
Final elements in rows when A322050 is displayed as a triangle.
Original entry on oeis.org
1, 5, 15, 35, 81, 173, 357, 725, 1461, 2933, 5877, 11765, 23541, 47093, 94197, 188405
Offset: 1
A322055
Number of ON cells after n generations of two-dimensional automaton based on knight moves (see Comments for definition; here a cell is turned ON if 1 or 2 neighbors are ON).
Original entry on oeis.org
1, 9, 41, 73, 145, 185, 321, 385, 577, 649, 881, 993, 1297, 1401, 1729, 1889, 2305, 2441, 2865, 3073, 3601, 3769, 4289, 4545, 5185, 5385, 6001, 6305, 7057, 7289, 8001, 8353, 9217, 9481, 10289, 10689, 11665, 11961, 12865, 13313, 14401, 14729, 15729, 16225
Offset: 0
Original entry on oeis.org
1, 8, 32, 32, 72, 40, 136, 64, 192, 72, 232, 112, 304, 104, 328, 160, 416, 136, 424, 208, 528, 168, 520, 256, 640, 200, 616, 304, 752, 232, 712, 352, 864, 264, 808, 400, 976, 296, 904, 448, 1088, 328, 1000, 496, 1200, 360, 1096, 544, 1312, 392, 1192, 592, 1424
Offset: 0
A322051
a(n) is the number of initial terms in the row of length 2^n of A322050 that agree with the limiting sequence A322049.
Original entry on oeis.org
1, 1, 2, 4, 6, 11, 22, 43, 86, 171, 342, 683, 1366, 2731, 5462
Offset: 0
n i* a(n) first non-matching pair (i* = Index of start in A319018)
0 3 1 5 1
1 5 1 7 5
2 9 2 6 3
3 17 4 8 5
4 33 6 17 15
5 65 11 145 141
6 129 22 73 69
7 257 43 734 726
8 513 86 349 341
9 1025 171 3579 3563
10 2049 342 1696 1680
11 4097 683 17810 17778
12 8193 1366 8394 8362
13 16385 2731 88553 88489
14 32769 5462 41665 41601
...
A334840
a(1) = 1, a(n) = a(n-1)/gcd(a(n-1),n) if this gcd is > 1, else a(n) = 4*a(n-1).
Original entry on oeis.org
1, 4, 16, 4, 16, 8, 32, 4, 16, 8, 32, 8, 32, 16, 64, 4, 16, 8, 32, 8, 32, 16, 64, 8, 32, 16, 64, 16, 64, 32, 128, 4, 16, 8, 32, 8, 32, 16, 64, 8, 32, 16, 64, 16, 64, 32, 128, 8, 32, 16, 64, 16, 64, 32, 128, 16, 64, 32, 128, 32, 128, 64, 256, 4, 16
Offset: 1
a(2) = 4*a(1) = 4, a(3) = 4*a(2) = 16, a(4) = a(3)/4 = 4, a(5) = 4*a(4) = 16, ...
-
a:=[1]; for n in [2..70] do if Gcd(a[n-1], n) eq 1 then Append(~a,4* a[n-1]); else Append(~a, a[n-1] div Gcd(a[n-1], n)); end if; end for; a; // Marius A. Burtea, May 13 2020
-
a[1] = 1; a[n_] := a[n] = If[(g = GCD[a[n-1], n]) > 1, a[n-1]/g, 4*a[n-1]]; Array[a, 100] (* Amiram Eldar, May 13 2020 *)
-
lista(nn) = {my(va = vector(nn)); va[1] = 1; for (n=2, nn, my(g = gcd(va[n-1], n)); if (g > 1, va[n] = va[n-1]/g, va[n] = 4*va[n-1]);); va;} \\ Michel Marcus, May 17 2020
-
from itertools import count, islice
from math import gcd
def A334840_gen(): # generator of terms
yield (a:=1)
for n in count(2):
yield (a:=a<<2 if (b:=gcd(a,n)) == 1 else a//b)
A334840_list = list(islice(A334840_gen(),30)) # Chai Wah Wu, Mar 18 2023
Showing 1-9 of 9 results.
Comments