A322049
When A322050 is displayed as a triangle the rows converge to this sequence.
Original entry on oeis.org
1, 7, 6, 30, 8, 48, 17, 81, 9, 50, 29, 145, 27, 145, 37, 189, 8, 45, 34, 166, 45, 252, 73, 342, 37, 179, 89, 425, 74, 374, 86, 412, 8, 49, 33, 165, 46, 270, 91, 436, 50, 277, 149, 734, 122, 630, 144, 723, 38, 179, 101, 488, 130, 753, 209, 990, 90, 450, 210, 991
Offset: 0
A322048
Final elements in rows when A322050 is displayed as a triangle.
Original entry on oeis.org
1, 5, 15, 35, 81, 173, 357, 725, 1461, 2933, 5877, 11765, 23541, 47093, 94197, 188405
Offset: 1
A322051
a(n) is the number of initial terms in the row of length 2^n of A322050 that agree with the limiting sequence A322049.
Original entry on oeis.org
1, 1, 2, 4, 6, 11, 22, 43, 86, 171, 342, 683, 1366, 2731, 5462
Offset: 0
n i* a(n) first non-matching pair (i* = Index of start in A319018)
0 3 1 5 1
1 5 1 7 5
2 9 2 6 3
3 17 4 8 5
4 33 6 17 15
5 65 11 145 141
6 129 22 73 69
7 257 43 734 726
8 513 86 349 341
9 1025 171 3579 3563
10 2049 342 1696 1680
11 4097 683 17810 17778
12 8193 1366 8394 8362
13 16385 2731 88553 88489
14 32769 5462 41665 41601
...
A319018
Number of ON cells after n generations of two-dimensional automaton based on knight moves (see Comments for definition).
Original entry on oeis.org
0, 1, 9, 17, 57, 65, 121, 145, 265, 273, 329, 377, 617, 657, 865, 921, 1201, 1209, 1265, 1313, 1553, 1617, 2001, 2121, 2689, 2745, 3009, 3153, 3841, 3953, 4513, 4649, 5297, 5305, 5361, 5409, 5649, 5713, 6097, 6233, 6881, 6953, 7353, 7585, 8713, 8913, 9961
Offset: 0
- Rémy Sigrist, Table of n, a(n) for n = 0..2049
- David Applegate, The movie version.
- Nathan Epstein, Gfycat animation of sequence.
- M. F. Hasler, Interactive illustration of A319018 and A319019, Dec. 2018.
- Bradley Klee, Log-Periodic Coloring at stage 257.
- Bradley Klee, Log-periodic coloring of the first quadrant, over the chair tiling.
- Rémy Sigrist, Illustration of the structure at stage 7
- Rémy Sigrist, Illustration of the structure at stage 257
- Rémy Sigrist, Colored illustration of the structure at stage 257 (where the hue is a function of the stage)
- Rémy Sigrist, PARI program for A319018
- N. J. A. Sloane, Hand-drawn sketch showing terms through about the eighth shell, but using offset a(0)=1. Illustrates the octagonal "castle walls".
- N. J. A. Sloane, Coordination Sequences, Planing Numbers, and Other Recent Sequences (II), Experimental Mathematics Seminar, Rutgers University, Jan 31 2019, Part I, Part 2, Slides. (Mentions this sequence)
- Index entries for sequences related to cellular automata
- Index entries for sequences related to toothpick sequences
Original entry on oeis.org
0, 1, 8, 8, 40, 8, 56, 24, 120, 8, 56, 48, 240, 40, 208, 56, 280, 8, 56, 48, 240, 64, 384, 120, 568, 56, 264, 144, 688, 112, 560, 136, 648, 8, 56, 48, 240, 64, 384, 136, 648, 72, 400, 232, 1128, 200, 1048, 240, 1216, 48, 216, 160, 768, 200, 1176, 352, 1664
Offset: 0
-
A319019_upto(N,S=[],K=[[t\5-2,t%5-2]|t<-digits(6888528048,25)])={ vector(N,n, #N=if(n>1, S=setunion(S,N); N=vecsort(concat([[Vecsmall(Vec(n)+k)|k<-K]|n<-N])); S=setunion(Set(vecextract(N, select(i->N[i-1]==N[i],[2..#N]))),S);setminus(Set(N),S),[[0,0]]))} \\ Increase stack size with allocatemem() for N > 86. - M. F. Hasler, Dec 27 2018
-
A319019(n)=sum(i=2,n,A322050(i))*8+(n>0) \\ M. F. Hasler, Dec 28 2018
A322663
First differences of A322662 divided by 12.
Original entry on oeis.org
1, 1, 7, 1, 6, 11, 14, 3, 11, 14, 25, 5, 18, 21, 37, 4, 11, 21, 50, 17, 31, 50, 50, 13, 32, 39, 70, 10, 42, 41, 81, 4, 11, 21, 50, 24, 57, 74, 89, 40, 62, 84, 105, 48, 66, 85, 111, 18, 37, 64, 151, 41, 80, 126, 131, 29
Offset: 1
Written as a 2^k triangle:
1,
1, 7,
1, 6, 11, 14,
3, 11, 14, 25, 5, 18, 21, 37,
4, 11, 21, 50, 17, 31, 50, 50, 13, 32, 39, 70, 10, 42, 41, 81,
4, 11, 21, 50, 24, 57, 74, 89, 40, 62, 84, 105, 48, 66, 85, 111, ...
-
HexStar=2*Sqrt[3]*{Cos[#*Pi/3+Pi/6],Sin[#*Pi/3+Pi/6]}&/@Range[0,5];
MoveSet2 =Join[2*HexStar+RotateRight[HexStar],2*HexStar+RotateLeft[HexStar]];
Clear@Pts;Pts[0] = {{0, 0}};
Pts[n_]:=Pts[n]=With[{pts=Pts[n-1]},Union[pts,Cases[Tally[Flatten[pts/.{x_,y_}:> Evaluate[{x,y}+#&/@MoveSet2],1]],{x_,1}:>x]]];
Abs[(1/12)*Subtract@@#&/@Partition[Length[Pts[#]]&/@Range[0,32],2,1]]
Showing 1-6 of 6 results.
Comments