A170915 Write 1 + sin x = Product_{n>=1} (1 + g_n * x^n); a(n) = denominator(g_n).
1, 1, 6, 6, 120, 120, 5040, 280, 72576, 362880, 39916800, 11975040, 1245404160, 88957440, 1307674368000, 11675664000, 71137485619200, 1067062284288000, 121645100408832000, 101370917007360000, 10218188434341888000, 5109094217170944000, 25852016738884976640000
Offset: 1
Examples
g_n = 1, 0, -1/6, 1/6, -19/120, 19/120, -659/5040, 37/280, -7675/72576, ...
Links
- Giedrius Alkauskas, One curious proof of Fermat's little theorem, arXiv:0801.0805 [math.NT], 2008.
- Giedrius Alkauskas, A curious proof of Fermat's little theorem, Amer. Math. Monthly 116(4) (2009), 362-364.
- H. Gingold, H. W. Gould, and Michael E. Mays, Power Product Expansions, Utilitas Mathematica 34 (1988), 143-161.
- H. Gingold and A. Knopfmacher, Analytic properties of power product expansions, Canad. J. Math. 47 (1995), 1219-1239.
- W. Lang, Recurrences for the general problem, 2009.
Programs
-
Maple
# Calculates the fractions g_n (choose L much larger than M): PPE_sin := proc(L, M) local t1, t0, g, t2, n, t3; if L < 2.5*M then print("Choose larger value for L"); else t1 := 1 + sin(x); t0 := series(t1, x, L); g := []; t2 := t0; for n to M do t3 := coeff(t2, x, n); t2 := series(t2/(1 + t3*x^n), x, L); g := [op(g), t3]; end do; end if; [seq(g[n], n = 1 .. nops(g))]; end proc; # Calculates the denominators of g_n: h1 := map(denom, PPE_sin(100, 40)); # Petros Hadjicostas, Oct 06 2019 by modifying N. J. A. Sloane's program from A170912 and A170913.
-
Mathematica
A[m_, n_] := A[m, n] = Which[m == 1, (1-(-1)^n)*(-1)^Floor[(n-1)/2]/(2*n!), m > n >= 1, 0, True, A[m - 1, n] - A[m - 1, m - 1]*A[m, n - m + 1]]; a[n_] := Denominator[A[n, n]]; a /@ Range[1, 55] (* Petros Hadjicostas, Oct 06 2019, courtesy of Jean-François Alcover *)
Formula
From Petros Hadjicostas, Oct 07 2019: (Start)
a(2*n+1) = A328186(2*n+1) for n >= 0.
Define (A(m,n): n,m >= 1) by A(m=1,2*n+1) = (-1)^n/(2*n+1)! for n >= 0, A(m=1,2*n) = 0 for n >= 1, A(m,n) = 0 for m > n >= 1 (upper triangular), and A(m,n) = A(m-1,n) - A(m-1,m-1) * A(m,n-m+1) for n >= m >= 2. Then g_n = A(n,n). (End)
Comments