A170942 Take the permutations of lengths 1, 2, 3, ... arranged lexicographically, and replace each permutation with the number of its fixed points.
1, 2, 0, 3, 1, 1, 0, 0, 1, 4, 2, 2, 1, 1, 2, 2, 0, 1, 0, 0, 1, 1, 0, 2, 1, 0, 0, 0, 1, 1, 2, 0, 0, 5, 3, 3, 2, 2, 3, 3, 1, 2, 1, 1, 2, 2, 1, 3, 2, 1, 1, 1, 2, 2, 3, 1, 1, 3, 1, 1, 0, 0, 1, 2, 0, 1, 0, 0, 1, 1, 0, 2, 1, 0, 0, 0, 1, 1, 2, 0, 0, 2, 0, 1, 0, 0, 1, 3, 1, 2, 1, 1, 2, 1, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0
Offset: 1
Examples
123,132,213,231,312,321 (corresponding to 3rd row of triangle A030298) have respectively 3,1,1,0,0,1 fixed points.
Links
- Reinhard Zumkeller, Rows n=1..7 of triangle, flattened
- FindStat - Combinatorial Statistic Finder, The number of fixed points of a permutation
Crossrefs
Programs
-
Haskell
import Data.List (permutations, sort) a170942 n k = a170942_tabf !! (n-1) (k-1) a170942_row n = map fps $ sort $ permutations [1..n] where fps perm = sum $ map fromEnum $ zipWith (==) perm [1..n] a170942_tabf = map a170942_row [1..] -- Reinhard Zumkeller, Mar 29 2012
Extensions
a(36)-a(105) from John W. Layman, Feb 23 2010
Keyword tabf added by Reinhard Zumkeller, Mar 29 2012
Comments