cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 18 results. Next

A000142 Factorial numbers: n! = 1*2*3*4*...*n (order of symmetric group S_n, number of permutations of n letters).

Original entry on oeis.org

1, 1, 2, 6, 24, 120, 720, 5040, 40320, 362880, 3628800, 39916800, 479001600, 6227020800, 87178291200, 1307674368000, 20922789888000, 355687428096000, 6402373705728000, 121645100408832000, 2432902008176640000, 51090942171709440000, 1124000727777607680000
Offset: 0

Views

Author

Keywords

Comments

The earliest publication that discusses this sequence appears to be the Sepher Yezirah [Book of Creation], circa AD 300. (See Knuth, also the Zeilberger link.) - N. J. A. Sloane, Apr 07 2014
For n >= 1, a(n) is the number of n X n (0,1) matrices with each row and column containing exactly one entry equal to 1.
This sequence is the BinomialMean transform of A000354. (See A075271 for definition.) - John W. Layman, Sep 12 2002 [This is easily verified from the Paul Barry formula for A000354, by interchanging summations and using the formula: Sum_k (-1)^k C(n-i, k) = KroneckerDelta(i,n). - David Callan, Aug 31 2003]
Number of distinct subsets of T(n-1) elements with 1 element A, 2 elements B, ..., n - 1 elements X (e.g., at n = 5, we consider the distinct subsets of ABBCCCDDDD and there are 5! = 120). - Jon Perry, Jun 12 2003
n! is the smallest number with that prime signature. E.g., 720 = 2^4 * 3^2 * 5. - Amarnath Murthy, Jul 01 2003
a(n) is the permanent of the n X n matrix M with M(i, j) = 1. - Philippe Deléham, Dec 15 2003
Given n objects of distinct sizes (e.g., areas, volumes) such that each object is sufficiently large to simultaneously contain all previous objects, then n! is the total number of essentially different arrangements using all n objects. Arbitrary levels of nesting of objects are permitted within arrangements. (This application of the sequence was inspired by considering leftover moving boxes.) If the restriction exists that each object is able or permitted to contain at most one smaller (but possibly nested) object at a time, the resulting sequence begins 1,2,5,15,52 (Bell Numbers?). Sets of nested wooden boxes or traditional nested Russian dolls come to mind here. - Rick L. Shepherd, Jan 14 2004
From Michael Somos, Mar 04 2004; edited by M. F. Hasler, Jan 02 2015: (Start)
Stirling transform of [2, 2, 6, 24, 120, ...] is A052856 = [2, 2, 4, 14, 76, ...].
Stirling transform of [1, 2, 6, 24, 120, ...] is A000670 = [1, 3, 13, 75, ...].
Stirling transform of [0, 2, 6, 24, 120, ...] is A052875 = [0, 2, 12, 74, ...].
Stirling transform of [1, 1, 2, 6, 24, 120, ...] is A000629 = [1, 2, 6, 26, ...].
Stirling transform of [0, 1, 2, 6, 24, 120, ...] is A002050 = [0, 1, 5, 25, 140, ...].
Stirling transform of (A165326*A089064)(1...) = [1, 0, 1, -1, 8, -26, 194, ...] is [1, 1, 2, 6, 24, 120, ...] (this sequence). (End)
First Eulerian transform of 1, 1, 1, 1, 1, 1... The first Eulerian transform transforms a sequence s to a sequence t by the formula t(n) = Sum_{k=0..n} e(n, k)s(k), where e(n, k) is a first-order Eulerian number [A008292]. - Ross La Haye, Feb 13 2005
Conjecturally, 1, 6, and 120 are the only numbers which are both triangular and factorial. - Christopher M. Tomaszewski (cmt1288(AT)comcast.net), Mar 30 2005
n! is the n-th finite difference of consecutive n-th powers. E.g., for n = 3, [0, 1, 8, 27, 64, ...] -> [1, 7, 19, 37, ...] -> [6, 12, 18, ...] -> [6, 6, ...]. - Bryan Jacobs (bryanjj(AT)gmail.com), Mar 31 2005
a(n+1) = (n+1)! = 1, 2, 6, ... has e.g.f. 1/(1-x)^2. - Paul Barry, Apr 22 2005
Write numbers 1 to n on a circle. Then a(n) = sum of the products of all n - 2 adjacent numbers. E.g., a(5) = 1*2*3 + 2*3*4 + 3*4*5 + 4*5*1 +5*1*2 = 120. - Amarnath Murthy, Jul 10 2005
The number of chains of maximal length in the power set of {1, 2, ..., n} ordered by the subset relation. - Rick L. Shepherd, Feb 05 2006
The number of circular permutations of n letters for n >= 0 is 1, 1, 1, 2, 6, 24, 120, 720, 5040, 40320, ... - Xavier Noria (fxn(AT)hashref.com), Jun 04 2006
a(n) is the number of deco polyominoes of height n (n >= 1; see definitions in the Barcucci et al. references). - Emeric Deutsch, Aug 07 2006
a(n) is the number of partition tableaux of size n. See Steingrimsson/Williams link for the definition. - David Callan, Oct 06 2006
Consider the n! permutations of the integer sequence [n] = 1, 2, ..., n. The i-th permutation consists of ncycle(i) permutation cycles. Then, if the Sum_{i=1..n!} 2^ncycle(i) runs from 1 to n!, we have Sum_{i=1..n!} 2^ncycle(i) = (n+1)!. E.g., for n = 3 we have ncycle(1) = 3, ncycle(2) = 2, ncycle(3) = 1, ncycle(4) = 2, ncycle(5) = 1, ncycle(6) = 2 and 2^3 + 2^2 + 2^1 + 2^2 + 2^1 + 2^2 = 8 + 4 + 2 + 4 + 2 + 4 = 24 = (n+1)!. - Thomas Wieder, Oct 11 2006
a(n) is the number of set partitions of {1, 2, ..., 2n - 1, 2n} into blocks of size 2 (perfect matchings) in which each block consists of one even and one odd integer. For example, a(3) = 6 counts 12-34-56, 12-36-45, 14-23-56, 14-25-36, 16-23-45, 16-25-34. - David Callan, Mar 30 2007
Consider the multiset M = [1, 2, 2, 3, 3, 3, 4, 4, 4, 4, ...] = [1, 2, 2, ..., n x 'n'] and form the set U (where U is a set in the strict sense) of all subsets N (where N may be a multiset again) of M. Then the number of elements |U| of U is equal to (n+1)!. E.g. for M = [1, 2, 2] we get U = [[], [2], [2, 2], [1], [1, 2], [1, 2, 2]] and |U| = 3! = 6. This observation is a more formal version of the comment given already by Rick L. Shepherd, Jan 14 2004. - Thomas Wieder, Nov 27 2007
For n >= 1, a(n) = 1, 2, 6, 24, ... are the positions corresponding to the 1's in decimal expansion of Liouville's constant (A012245). - Paul Muljadi, Apr 15 2008
Triangle A144107 has n! for row sums (given n > 0) with right border n! and left border A003319, the INVERTi transform of (1, 2, 6, 24, ...). - Gary W. Adamson, Sep 11 2008
Equals INVERT transform of A052186 and row sums of triangle A144108. - Gary W. Adamson, Sep 11 2008
From Abdullahi Umar, Oct 12 2008: (Start)
a(n) is also the number of order-decreasing full transformations (of an n-chain).
a(n-1) is also the number of nilpotent order-decreasing full transformations (of an n-chain). (End)
n! is also the number of optimal broadcast schemes in the complete graph K_{n}, equivalent to the number of binomial trees embedded in K_{n} (see Calin D. Morosan, Information Processing Letters, 100 (2006), 188-193). - Calin D. Morosan (cd_moros(AT)alumni.concordia.ca), Nov 28 2008
Let S_{n} denote the n-star graph. The S_{n} structure consists of n S_{n-1} structures. This sequence gives the number of edges between the vertices of any two specified S_{n+1} structures in S_{n+2} (n >= 1). - K.V.Iyer, Mar 18 2009
Chromatic invariant of the sun graph S_{n-2}.
It appears that a(n+1) is the inverse binomial transform of A000255. - Timothy Hopper, Aug 20 2009
a(n) is also the determinant of a square matrix, An, whose coefficients are the reciprocals of beta function: a{i, j} = 1/beta(i, j), det(An) = n!. - Enrique Pérez Herrero, Sep 21 2009
The asymptotic expansions of the exponential integrals E(x, m = 1, n = 1) ~ exp(-x)/x*(1 - 1/x + 2/x^2 - 6/x^3 + 24/x^4 + ...) and E(x, m = 1, n = 2) ~ exp(-x)/x*(1 - 2/x + 6/x^2 - 24/x^3 + ...) lead to the factorial numbers. See A163931 and A130534 for more information. - Johannes W. Meijer, Oct 20 2009
Satisfies A(x)/A(x^2), A(x) = A173280. - Gary W. Adamson, Feb 14 2010
a(n) = G^n where G is the geometric mean of the first n positive integers. - Jaroslav Krizek, May 28 2010
Increasing colored 1-2 trees with choice of two colors for the rightmost branch of nonleaves. - Wenjin Woan, May 23 2011
Number of necklaces with n labeled beads of 1 color. - Robert G. Wilson v, Sep 22 2011
The sequence 1!, (2!)!, ((3!)!)!, (((4!)!)!)!, ..., ((...(n!)!)...)! (n times) grows too rapidly to have its own entry. See Hofstadter.
The e.g.f. of 1/a(n) = 1/n! is BesselI(0, 2*sqrt(x)). See Abramowitz-Stegun, p. 375, 9.3.10. - Wolfdieter Lang, Jan 09 2012
a(n) is the length of the n-th row which is the sum of n-th row in triangle A170942. - Reinhard Zumkeller, Mar 29 2012
Number of permutations of elements 1, 2, ..., n + 1 with a fixed element belonging to a cycle of length r does not depend on r and equals a(n). - Vladimir Shevelev, May 12 2012
a(n) is the number of fixed points in all permutations of 1, ..., n: in all n! permutations, 1 is first exactly (n-1)! times, 2 is second exactly (n-1)! times, etc., giving (n-1)!*n = n!. - Jon Perry, Dec 20 2012
For n >= 1, a(n-1) is the binomial transform of A000757. See Moreno-Rivera. - Luis Manuel Rivera Martínez, Dec 09 2013
Each term is divisible by its digital root (A010888). - Ivan N. Ianakiev, Apr 14 2014
For m >= 3, a(m-2) is the number hp(m) of acyclic Hamiltonian paths in a simple graph with m vertices, which is complete except for one missing edge. For m < 3, hp(m)=0. - Stanislav Sykora, Jun 17 2014
a(n) is the number of increasing forests with n nodes. - Brad R. Jones, Dec 01 2014
The factorial numbers can be calculated by means of the recurrence n! = (floor(n/2)!)^2 * sf(n) where sf(n) are the swinging factorials A056040. This leads to an efficient algorithm if sf(n) is computed via prime factorization. For an exposition of this algorithm see the link below. - Peter Luschny, Nov 05 2016
Treeshelves are ordered (plane) binary (0-1-2) increasing trees where the nodes of outdegree 1 come in 2 colors. There are n! treeshelves of size n, and classical Françon's bijection maps bijectively treeshelves into permutations. - Sergey Kirgizov, Dec 26 2016
Satisfies Benford's law [Diaconis, 1977; Berger-Hill, 2017] - N. J. A. Sloane, Feb 07 2017
a(n) = Sum((d_p)^2), where d_p is the number of standard tableaux in the Ferrers board of the integer partition p and summation is over all integer partitions p of n. Example: a(3) = 6. Indeed, the partitions of 3 are [3], [2,1], and [1,1,1], having 1, 2, and 1 standard tableaux, respectively; we have 1^2 + 2^2 + 1^2 = 6. - Emeric Deutsch, Aug 07 2017
a(n) is the n-th derivative of x^n. - Iain Fox, Nov 19 2017
a(n) is the number of maximum chains in the n-dimensional Boolean cube {0,1}^n in respect to the relation "precedes". It is defined as follows: for arbitrary vectors u, v of {0,1}^n, such that u = (u_1, u_2, ..., u_n) and v = (v_1, v_2, ..., v_n), "u precedes v" if u_i <= v_i, for i=1, 2, ..., n. - Valentin Bakoev, Nov 20 2017
a(n) is the number of shortest paths (for example, obtained by Breadth First Search) between the nodes (0,0,...,0) (i.e., the all-zeros vector) and (1,1,...,1) (i.e., the all-ones vector) in the graph H_n, corresponding to the n-dimensional Boolean cube {0,1}^n. The graph is defined as H_n = (V_n, E_n), where V_n is the set of all vectors of {0,1}^n, and E_n contains edges formed by each pair adjacent vectors. - Valentin Bakoev, Nov 20 2017
a(n) is also the determinant of the symmetric n X n matrix M defined by M(i,j) = sigma(gcd(i,j)) for 1 <= i,j <= n. - Bernard Schott, Dec 05 2018
a(n) is also the number of inversion sequences of length n. A length n inversion sequence e_1, e_2, ..., e_n is a sequence of n integers such that 0 <= e_i < i. - Juan S. Auli, Oct 14 2019
The term "factorial" ("factorielle" in French) was coined by the French mathematician Louis François Antoine Arbogast (1759-1803) in 1800. The notation "!" was first used by the French mathematician Christian Kramp (1760-1826) in 1808. - Amiram Eldar, Apr 16 2021
Also the number of signotopes of rank 2, i.e., mappings X:{{1..n} choose 2}->{+,-} such that for any three indices a < b < c, the sequence X(a,b), X(a,c), X(b,c) changes its sign at most once (see Felsner-Weil reference). - Manfred Scheucher, Feb 09 2022
a(n) is also the number of labeled commutative semisimple rings with n elements. As an example the only commutative semisimple rings with 4 elements are F_4 and F_2 X F_2. They both have exactly 2 automorphisms, hence a(4)=24/2+24/2=24. - Paul Laubie, Mar 05 2024
a(n) is the number of extremely unlucky Stirling permutations of order n+1; i.e., the number of Stirling permutations of order n+1 that have exactly one lucky car. - Bridget Tenner, Apr 09 2024

Examples

			There are 3! = 1*2*3 = 6 ways to arrange 3 letters {a, b, c}, namely abc, acb, bac, bca, cab, cba.
Let n = 2. Consider permutations of {1, 2, 3}. Fix element 3. There are a(2) = 2 permutations in each of the following cases: (a) 3 belongs to a cycle of length 1 (permutations (1, 2, 3) and (2, 1, 3)); (b) 3 belongs to a cycle of length 2 (permutations (3, 2, 1) and (1, 3, 2)); (c) 3 belongs to a cycle of length 3 (permutations (2, 3, 1) and (3, 1, 2)). - _Vladimir Shevelev_, May 13 2012
G.f. = 1 + x + 2*x^2 + 6*x^3 + 24*x^4 + 120*x^5 + 720*x^6 + 5040*x^7 + ...
		

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 833.
  • A. T. Benjamin and J. J. Quinn, Proofs that really count: the art of combinatorial proof, M.A.A. 2003, id. 125; also p. 90, ex. 3.
  • Florian Cajori, A History of Mathematical Notations, Dover edition (2012), pars. 448-449.
  • John H. Conway and Richard K. Guy, The Book of Numbers, New York: Springer-Verlag, 1996. See pp. 64-66.
  • Jan Gullberg, Mathematics from the Birth of Numbers, W. W. Norton & Co., NY & London, 1997, §4.1 Symbols Galore, p. 106.
  • Douglas R. Hofstadter, Fluid concepts & creative analogies: computer models of the fundamental mechanisms of thought, Basic Books, 1995, pages 44-46.
  • A. N. Khovanskii. The Application of Continued Fractions and Their Generalizations to Problem in Approximation Theory. Groningen: Noordhoff, Netherlands, 1963. See p. 141 (10.19).
  • D. E. Knuth, The Art of Computer Programming, Vol. 3, Section 5.1.2, p. 23. [From N. J. A. Sloane, Apr 07 2014]
  • J.-M. De Koninck and A. Mercier, 1001 Problèmes en Théorie Classique des Nombres, Problème 693 pp. 90, 297, Ellipses Paris 2004.
  • A. P. Prudnikov, Yu. A. Brychkov, and O. I. Marichev, "Integrals and Series", Volume 1: "Elementary Functions", Chapter 4: "Finite Sums", New York, Gordon and Breach Science Publishers, 1986-1992.
  • R. W. Robinson, Counting arrangements of bishops, pp. 198-214 of Combinatorial Mathematics IV (Adelaide 1975), Lect. Notes Math., 560 (1976).
  • Sepher Yezirah [Book of Creation], circa AD 300. See verse 52.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • Jerome Spanier and Keith B. Oldham, "Atlas of Functions", Hemisphere Publishing Corp., 1987, chapter 2, pages 19-24.
  • D. Stanton and D. White, Constructive Combinatorics, Springer, 1986; see p. 91.
  • Carlo Suares, Sepher Yetsira, Shambhala Publications, 1976. See verse 52.
  • David Wells, The Penguin Dictionary of Curious and Interesting Numbers, Penguin Books, 1987, pp. 102.

Crossrefs

Factorial base representation: A007623.
Complement of A063992. - Reinhard Zumkeller, Oct 11 2008
Cf. A053657, A163176. - Jonathan Sondow, Jul 26 2009
Cf. A173280. - Gary W. Adamson, Feb 14 2010
Boustrophedon transforms: A230960, A230961.
Cf. A233589.
Cf. A245334.
A row of the array in A249026.
Cf. A001013 (multiplicative closure).
For factorials with initial digit d (1 <= d <= 9) see A045509, A045510, A045511, A045516, A045517, A045518, A282021, A045519; A045520, A045521, A045522, A045523, A045524, A045525, A045526, A045527, A045528, A045529.

Programs

  • Axiom
    [factorial(n) for n in 0..10]
    
  • GAP
    List([0..22],Factorial); # Muniru A Asiru, Dec 05 2018
    
  • Haskell
    a000142 :: (Enum a, Num a, Integral t) => t -> a
    a000142 n = product [1 .. fromIntegral n]
    a000142_list = 1 : zipWith (*) [1..] a000142_list
    -- Reinhard Zumkeller, Mar 02 2014, Nov 02 2011, Apr 21 2011
    
  • Julia
    print([factorial(big(n)) for n in 0:28]) # Paul Muljadi, May 01 2024
  • Magma
    a:= func< n | Factorial(n) >; [ a(n) : n in [0..10]];
    
  • Maple
    A000142 := n -> n!; seq(n!,n=0..20);
    spec := [ S, {S=Sequence(Z) }, labeled ]; seq(combstruct[count](spec,size=n), n=0..20);
    # Maple program for computing cycle indices of symmetric groups
    M:=6: f:=array(0..M): f[0]:=1: print(`n= `,0); print(f[0]); f[1]:=x[1]: print(`n= `, 1); print(f[1]); for n from 2 to M do f[n]:=expand((1/n)*add( x[l]*f[n-l],l=1..n)); print(`n= `, n); print(f[n]); od:
    with(combstruct):ZL0:=[S,{S=Set(Cycle(Z,card>0))},labeled]: seq(count(ZL0,size=n),n=0..20); # Zerinvary Lajos, Sep 26 2007
  • Mathematica
    Table[Factorial[n], {n, 0, 20}] (* Stefan Steinerberger, Mar 30 2006 *)
    FoldList[#1 #2 &, 1, Range@ 20] (* Robert G. Wilson v, May 07 2011 *)
    Range[20]! (* Harvey P. Dale, Nov 19 2011 *)
    RecurrenceTable[{a[n] == n*a[n - 1], a[0] == 1}, a, {n, 0, 22}] (* Ray Chandler, Jul 30 2015 *)
  • PARI
    a(n)=prod(i=1, n, i) \\ Felix Fröhlich, Aug 17 2014
    
  • PARI
    {a(n) = if(n<0, 0, n!)}; /* Michael Somos, Mar 04 2004 */
    
  • Python
    for i in range(1, 1000):
        y = i
        for j in range(1, i):
           y *= i - j
        print(y, "\n")
    
  • Python
    import math
    for i in range(1, 1000):
        math.factorial(i)
        print("")
    # Ruskin Harding, Feb 22 2013
    
  • Sage
    [factorial(n) for n in (1..22)] # Giuseppe Coppoletta, Dec 05 2014
    
  • Scala
    (1: BigInt).to(24: BigInt).scanLeft(1: BigInt)( * ) // Alonso del Arte, Mar 02 2019
    

Formula

Exp(x) = Sum_{m >= 0} x^m/m!. - Mohammad K. Azarian, Dec 28 2010
Sum_{i=0..n} (-1)^i * i^n * binomial(n, i) = (-1)^n * n!. - Yong Kong (ykong(AT)curagen.com), Dec 26 2000
Sum_{i=0..n} (-1)^i * (n-i)^n * binomial(n, i) = n!. - Peter C. Heinig (algorithms(AT)gmx.de), Apr 10 2007
The sequence trivially satisfies the recurrence a(n+1) = Sum_{k=0..n} binomial(n,k) * a(k)*a(n-k). - Robert FERREOL, Dec 05 2009
D-finite with recurrence: a(n) = n*a(n-1), n >= 1. n! ~ sqrt(2*Pi) * n^(n+1/2) / e^n (Stirling's approximation).
a(0) = 1, a(n) = subs(x = 1, (d^n/dx^n)(1/(2-x))), n = 1, 2, ... - Karol A. Penson, Nov 12 2001
E.g.f.: 1/(1-x). - Michael Somos, Mar 04 2004
a(n) = Sum_{k=0..n} (-1)^(n-k)*A000522(k)*binomial(n, k) = Sum_{k=0..n} (-1)^(n-k)*(x+k)^n*binomial(n, k). - Philippe Deléham, Jul 08 2004
Binomial transform of A000166. - Ross La Haye, Sep 21 2004
a(n) = Sum_{i=1..n} ((-1)^(i-1) * sum of 1..n taken n - i at a time) - e.g., 4! = (1*2*3 + 1*2*4 + 1*3*4 + 2*3*4) - (1*2 + 1*3 + 1*4 + 2*3 + 2*4 + 3*4) + (1 + 2 + 3 + 4) - 1 = (6 + 8 + 12 + 24) - (2 + 3 + 4 + 6 + 8 + 12) + 10 - 1 = 50 - 35 + 10 - 1 = 24. - Jon Perry, Nov 14 2005
a(n) = (n-1)*(a(n-1) + a(n-2)), n >= 2. - Matthew J. White, Feb 21 2006
1 / a(n) = determinant of matrix whose (i,j) entry is (i+j)!/(i!(j+1)!) for n > 0. This is a matrix with Catalan numbers on the diagonal. - Alexander Adamchuk, Jul 04 2006
Hankel transform of A074664. - Philippe Deléham, Jun 21 2007
For n >= 2, a(n-2) = (-1)^n*Sum_{j=0..n-1} (j+1)*Stirling1(n,j+1). - Milan Janjic, Dec 14 2008
From Paul Barry, Jan 15 2009: (Start)
G.f.: 1/(1-x-x^2/(1-3x-4x^2/(1-5x-9x^2/(1-7x-16x^2/(1-9x-25x^2... (continued fraction), hence Hankel transform is A055209.
G.f. of (n+1)! is 1/(1-2x-2x^2/(1-4x-6x^2/(1-6x-12x^2/(1-8x-20x^2... (continued fraction), hence Hankel transform is A059332. (End)
a(n) = Product_{p prime} p^(Sum_{k > 0} floor(n/p^k)) by Legendre's formula for the highest power of a prime dividing n!. - Jonathan Sondow, Jul 24 2009
a(n) = A053657(n)/A163176(n) for n > 0. - Jonathan Sondow, Jul 26 2009
It appears that a(n) = (1/0!) + (1/1!)*n + (3/2!)*n*(n-1) + (11/3!)*n*(n-1)*(n-2) + ... + (b(n)/n!)*n*(n-1)*...*2*1, where a(n) = (n+1)! and b(n) = A000255. - Timothy Hopper, Aug 12 2009
Sum_{n >= 0} 1/a(n) = e. - Jaume Oliver Lafont, Mar 03 2009
a(n) = a(n-1)^2/a(n-2) + a(n-1), n >= 2. - Jaume Oliver Lafont, Sep 21 2009
a(n) = Gamma(n+1). - Enrique Pérez Herrero, Sep 21 2009
a(n) = A173333(n,1). - Reinhard Zumkeller, Feb 19 2010
a(n) = A_{n}(1) where A_{n}(x) are the Eulerian polynomials. - Peter Luschny, Aug 03 2010
a(n) = n*(2*a(n-1) - (n-1)*a(n-2)), n > 1. - Gary Detlefs, Sep 16 2010
1/a(n) = -Sum_{k=1..n+1} (-2)^k*(n+k+2)*a(k)/(a(2*k+1)*a(n+1-k)). - Groux Roland, Dec 08 2010
From Vladimir Shevelev, Feb 21 2011: (Start)
a(n) = Product_{p prime, p <= n} p^(Sum_{i >= 1} floor(n/p^i)).
The infinitary analog of this formula is: a(n) = Product_{q terms of A050376 <= n} q^((n)_q), where (n)_q denotes the number of those numbers <= n for which q is an infinitary divisor (for the definition see comment in A037445). (End)
The terms are the denominators of the expansion of sinh(x) + cosh(x). - Arkadiusz Wesolowski, Feb 03 2012
G.f.: 1 / (1 - x / (1 - x / (1 - 2*x / (1 - 2*x / (1 - 3*x / (1 - 3*x / ... )))))). - Michael Somos, May 12 2012
G.f. 1 + x/(G(0)-x) where G(k) = 1 - (k+1)*x/(1 - x*(k+2)/G(k+1)); (continued fraction, 2-step). - Sergei N. Gladkovskii, Aug 14 2012
G.f.: W(1,1;-x)/(W(1,1;-x) - x*W(1,2;-x)), where W(a,b,x) = 1 - a*b*x/1! + a*(a+1)*b*(b+1)*x^2/2! - ... + a*(a+1)*...*(a+n-1)*b*(b+1)*...*(b+n-1)*x^n/n! + ...; see [A. N. Khovanskii, p. 141 (10.19)]. - Sergei N. Gladkovskii, Aug 15 2012
From Sergei N. Gladkovskii, Dec 26 2012: (Start)
G.f.: A(x) = 1 + x/(G(0) - x) where G(k) = 1 + (k+1)*x - x*(k+2)/G(k+1); (continued fraction).
Let B(x) be the g.f. for A051296, then A(x) = 2 - 1/B(x). (End)
G.f.: 1 + x*(G(0) - 1)/(x-1) where G(k) = 1 - (2*k+1)/(1-x/(x - 1/(1 - (2*k+2)/(1-x/(x - 1/G(k+1) ))))); (continued fraction). - Sergei N. Gladkovskii, Jan 15 2013
G.f.: 1 + x*(1 - G(0))/(sqrt(x)-x) where G(k) = 1 - (k+1)*sqrt(x)/(1-sqrt(x)/(sqrt(x)-1/G(k+1) )); (continued fraction). - Sergei N. Gladkovskii, Jan 25 2013
G.f.: 1 + x/G(0) where G(k) = 1 - x*(k+2)/( 1 - x*(k+1)/G(k+1) ); (continued fraction). - Sergei N. Gladkovskii, Mar 23 2013
a(n) = det(S(i+1, j), 1 <= i, j <=n ), where S(n,k) are Stirling numbers of the second kind. - Mircea Merca, Apr 04 2013
G.f.: G(0)/2, where G(k) = 1 + 1/(1 - x*(k+1)/(x*(k+1) + 1/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, May 24 2013
G.f.: 2/G(0), where G(k) = 1 + 1/(1 - 1/(1 - 1/(2*x*(k+1)) + 1/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, May 29 2013
G.f.: G(0), where G(k) = 1 + x*(2*k+1)/(1 - x*(2*k+2)/(x*(2*k+2) + 1/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, Jun 07 2013
a(n) = P(n-1, floor(n/2)) * floor(n/2)! * (n - (n-2)*((n+1) mod 2)), where P(n, k) are the k-permutations of n objects, n > 0. - Wesley Ivan Hurt, Jun 07 2013
a(n) = a(n-2)*(n-1)^2 + a(n-1), n > 1. - Ivan N. Ianakiev, Jun 18 2013
a(n) = a(n-2)*(n^2-1) - a(n-1), n > 1. - Ivan N. Ianakiev, Jun 30 2013
G.f.: 1 + x/Q(0), m=+2, where Q(k) = 1 - 2*x*(2*k+1) - m*x^2*(k+1)*(2*k+1)/( 1 - 2*x*(2*k+2) - m*x^2*(k+1)*(2*k+3)/Q(k+1) ); (continued fraction). - Sergei N. Gladkovskii, Sep 24 2013
a(n) = A245334(n,n). - Reinhard Zumkeller, Aug 31 2014
a(n) = Product_{i = 1..n} A014963^floor(n/i) = Product_{i = 1..n} A003418(floor(n/i)). - Matthew Vandermast, Dec 22 2014
a(n) = round(Sum_{k>=1} log(k)^n/k^2), for n>=1, which is related to the n-th derivative of the Riemann zeta function at x=2 as follows: round((-1)^n * zeta^(n)(2)). Also see A073002. - Richard R. Forberg, Dec 30 2014
a(n) ~ Sum_{j>=0} j^n/e^j, where e = A001113. When substituting a generic variable for "e" this infinite sum is related to Eulerian polynomials. See A008292. This approximation of n! is within 0.4% at n = 2. See A255169. Accuracy, as a percentage, improves rapidly for larger n. - Richard R. Forberg, Mar 07 2015
a(n) = Product_{k=1..n} (C(n+1, 2)-C(k, 2))/(2*k-1); see Masanori Ando link. - Michel Marcus, Apr 17 2015
Sum_{n>=0} a(n)/(a(n + 1)*a(n + 2)) = Sum_{n>=0} 1/((n + 2)*(n + 1)^2*a(n)) = 2 - exp(1) - gamma + Ei(1) = 0.5996203229953..., where gamma = A001620, Ei(1) = A091725. - Ilya Gutkovskiy, Nov 01 2016
a(2^n) = 2^(2^n - 1) * 1!! * 3!! * 7!! * ... * (2^n - 1)!!. For example, 16! = 2^15*(1*3)*(1*3*5*7)*(1*3*5*7*9*11*13*15) = 20922789888000. - Peter Bala, Nov 01 2016
a(n) = sum(prod(B)), where the sum is over all subsets B of {1,2,...,n-1} and where prod(B) denotes the product of all the elements of set B. If B is a singleton set with element b, then we define prod(B)=b, and, if B is the empty set, we define prod(B) to be 1. For example, a(4)=(1*2*3)+(1*2)+(1*3)+(2*3)+(1)+(2)+(3)+1=24. - Dennis P. Walsh, Oct 23 2017
Sum_{n >= 0} 1/(a(n)*(n+2)) = 1. - Multiplying the denominator by (n+2) in Jaume Oliver Lafont's entry above creates a telescoping sum. - Fred Daniel Kline, Nov 08 2020
O.g.f.: Sum_{k >= 0} k!*x^k = Sum_{k >= 0} (k+y)^k*x^k/(1 + (k+y)*x)^(k+1) for arbitrary y. - Peter Bala, Mar 21 2022
E.g.f.: 1/(1 + LambertW(-x*exp(-x))) = 1/(1-x), see A258773. -(1/x)*substitute(z = x*exp(-x), z*(d/dz)LambertW(-z)) = 1/(1 - x). See A075513. Proof: Use the compositional inverse (x*exp(-x))^[-1] = -LambertW(-z). See A000169 or A152917, and Richard P. Stanley: Enumerative Combinatorics, vol. 2, p. 37, eq. (5.52). - Wolfdieter Lang, Oct 17 2022
Sum_{k >= 1} 1/10^a(k) = A012245 (Liouville constant). - Bernard Schott, Dec 18 2022
From David Ulgenes, Sep 19 2023: (Start)
1/a(n) = (e/(2*Pi*n)*Integral_{x=-oo..oo} cos(x-n*arctan(x))/(1+x^2)^(n/2) dx). Proof: take the real component of Laplace's integral for 1/Gamma(x).
a(n) = Integral_{x=0..1} e^(-t)*LerchPhi(1/e, -n, t) dt. Proof: use the relationship Gamma(x+1) = Sum_{n >= 0} Integral_{t=n..n+1} e^(-t)t^x dt = Sum_{n >= 0} Integral_{t=0..1} e^(-(t+n))(t+n)^x dt and interchange the order of summation and integration.
Conjecture: a(n) = 1/(2*Pi)*Integral_{x=-oo..oo}(n+i*x+1)!/(i*x+1)-(n+i*x-1)!/(i*x-1)dx. (End)
a(n) = floor(b(n)^n / (floor(((2^b(n) + 1) / 2^n)^b(n)) mod 2^b(n))), where b(n) = (n + 1)^(n + 2) = A007778(n+1). Joint work with Mihai Prunescu. - Lorenzo Sauras Altuzarra, Oct 18 2023
a(n) = e^(Integral_{x=1..n+1} Psi(x) dx) where Psi(x) is the digamma function. - Andrea Pinos, Jan 10 2024
a(n) = Integral_{x=0..oo} e^(-x^(1/n)) dx, for n > 0. - Ridouane Oudra, Apr 20 2024
O.g.f.: N(x) = hypergeometric([1,1], [], x) = LaplaceTransform(x/(1-x))/x, satisfying x^2*N'(x) + (x-1)*N(x) + 1 = 0, with N(0) = 1. - Wolfdieter Lang, May 31 2025

A000166 Subfactorial or rencontres numbers, or derangements: number of permutations of n elements with no fixed points.

Original entry on oeis.org

1, 0, 1, 2, 9, 44, 265, 1854, 14833, 133496, 1334961, 14684570, 176214841, 2290792932, 32071101049, 481066515734, 7697064251745, 130850092279664, 2355301661033953, 44750731559645106, 895014631192902121, 18795307255050944540, 413496759611120779881, 9510425471055777937262
Offset: 0

Views

Author

Keywords

Comments

Euler (1809) not only gives the first ten or so terms of the sequence, he also proves both recurrences a(n) = (n-1)*(a(n-1) + a(n-2)) and a(n) = n*a(n-1) + (-1)^n.
a(n) is the permanent of the matrix with 0 on the diagonal and 1 elsewhere. - Yuval Dekel, Nov 01 2003
a(n) is the number of desarrangements of length n. A desarrangement of length n is a permutation p of {1,2,...,n} for which the smallest of all the ascents of p (taken to be n if there are no ascents) is even. Example: a(3) = 2 because we have 213 and 312 (smallest ascents at i = 2). See the J. Désarménien link and the Bona reference (p. 118). - Emeric Deutsch, Dec 28 2007
a(n) is the number of deco polyominoes of height n and having in the last column an even number of cells. A deco polyomino is a directed column-convex polyomino in which the height, measured along the diagonal, is attained only in the last column. - Emeric Deutsch, Dec 28 2007
Attributed to Nicholas Bernoulli in connection with a probability problem that he presented. See Problem #15, p. 494, in "History of Mathematics" by David M. Burton, 6th edition. - Mohammad K. Azarian, Feb 25 2008
a(n) is the number of permutations p of {1,2,...,n} with p(1)!=1 and having no right-to-left minima in consecutive positions. Example a(3) = 2 because we have 231 and 321. - Emeric Deutsch, Mar 12 2008
a(n) is the number of permutations p of {1,2,...,n} with p(n)! = n and having no left to right maxima in consecutive positions. Example a(3) = 2 because we have 312 and 321. - Emeric Deutsch, Mar 12 2008
Number of wedged (n-1)-spheres in the homotopy type of the Boolean complex of the complete graph K_n. - Bridget Tenner, Jun 04 2008
The only prime number in the sequence is 2. - Howard Berman (howard_berman(AT)hotmail.com), Nov 08 2008
From Emeric Deutsch, Apr 02 2009: (Start)
a(n) is the number of permutations of {1,2,...,n} having exactly one small ascent. A small ascent in a permutation (p_1,p_2,...,p_n) is a position i such that p_{i+1} - p_i = 1. (Example: a(3) = 2 because we have 312 and 231; see the Charalambides reference, pp. 176-180.) [See also David, Kendall and Barton, p. 263. - N. J. A. Sloane, Apr 11 2014]
a(n) is the number of permutations of {1,2,...,n} having exactly one small descent. A small descent in a permutation (p_1,p_2,...,p_n) is a position i such that p_i - p_{i+1} = 1. (Example: a(3)=2 because we have 132 and 213.) (End)
For n > 2, a(n) + a(n-1) = A000255(n-1); where A000255 = (1, 1, 3, 11, 53, ...). - Gary W. Adamson, Apr 16 2009
Connection to A002469 (game of mousetrap with n cards): A002469(n) = (n-2)*A000255(n-1) + A000166(n). (Cf. triangle A159610.) - Gary W. Adamson, Apr 17 2009
From Emeric Deutsch, Jul 18 2009: (Start)
a(n) is the sum of the values of the largest fixed points of all non-derangements of length n-1. Example: a(4)=9 because the non-derangements of length 3 are 123, 132, 213, and 321, having largest fixed points 3, 1, 3, and 2, respectively.
a(n) is the number of non-derangements of length n+1 for which the difference between the largest and smallest fixed point is 2. Example: a(3) = 2 because we have 1'43'2 and 32'14'; a(4) = 9 because we have 1'23'54, 1'43'52, 1'53'24, 52'34'1, 52'14'3, 32'54'1, 213'45', 243'15', and 413'25' (the extreme fixed points are marked).
(End)
a(n), n >= 1, is also the number of unordered necklaces with n beads, labeled differently from 1 to n, where each necklace has >= 2 beads. This produces the M2 multinomial formula involving partitions without part 1 given below. Because M2(p) counts the permutations with cycle structure given by partition p, this formula gives the number of permutations without fixed points (no 1-cycles), i.e., the derangements, hence the subfactorials with their recurrence relation and inputs. Each necklace with no beads is assumed to contribute a factor 1 in the counting, hence a(0)=1. This comment derives from a family of recurrences found by Malin Sjodahl for a combinatorial problem for certain quark and gluon diagrams (Feb 27 2010). - Wolfdieter Lang, Jun 01 2010
From Emeric Deutsch, Sep 06 2010: (Start)
a(n) is the number of permutations of {1,2,...,n, n+1} starting with 1 and having no successions. A succession in a permutation (p_1,p_2,...,p_n) is a position i such that p_{i+1} - p_i = 1. Example: a(3)=2 because we have 1324 and 1432.
a(n) is the number of permutations of {1,2,...,n} that do not start with 1 and have no successions. A succession in a permutation (p_1,p_2,...,p_n) is a position i such that p_{i+1} - p_i = 1. Example: a(3)=2 because we have 213 and 321.
(End)
Increasing colored 1-2 trees with choice of two colors for the rightmost branch of nonleave except on the leftmost path, there is no vertex of outdegree one on the leftmost path. - Wenjin Woan, May 23 2011
a(n) is the number of zeros in n-th row of the triangle in A170942, n > 0. - Reinhard Zumkeller, Mar 29 2012
a(n) is the maximal number of totally mixed Nash equilibria in games of n players, each with 2 pure options. - Raimundas Vidunas, Jan 22 2014
Convolution of sequence A135799 with the sequence generated by 1+x^2/(2*x+1). - Thomas Baruchel, Jan 08 2016
The number of interior lattice points of the subpolytope of the n-dimensional permutohedron whose vertices correspond to permutations avoiding 132 and 312. - Robert Davis, Oct 05 2016
Consider n circles of different radii, where each circle is either put inside some bigger circle or contains a smaller circle inside it (no common points are allowed). Then a(n) gives the number of such combinations. - Anton Zakharov, Oct 12 2016
If we partition the permutations of [n+1] in A000240 according to their starting digit, we will get (n+1) equinumerous classes each of size a(n), i.e., A000240(n+1) = (n+1)*a(n), hence a(n) is the size of each class of permutations of [n+1] in A000240. For example, for n = 4 we have 45 = 5*9. - Enrique Navarrete, Jan 10 2017
Call d_n1 the permutations of [n] that have the substring n1 but no substring in {12,23,...,(n-1)n}. If we partition them according to their starting digit, we will get (n-1) equinumerous classes each of size A000166(n-2) (the class starting with the digit 1 is empty since we must have the substring n1). Hence d_n1 = (n-1)*A000166(n-2) and A000166(n-2) is the size of each nonempty class in d_n1. For example, d_71 = 6*44 = 264, so there are 264 permutations in d_71 distributed in 6 nonempty classes of size A000166(5) = 44. (To get permutations in d_n1 recursively from more basic ones see the link "Forbidden Patterns" below.) - Enrique Navarrete, Jan 15 2017
Also the number of maximum matchings and minimum edge covers in the n-crown graph. - Eric W. Weisstein, Jun 14 and Dec 24 2017
The sequence a(n) taken modulo a positive integer k is periodic with exact period dividing k when k is even and dividing 2*k when k is odd. This follows from the congruence a(n+k) = (-1)^k*a(n) (mod k) for all n and k, which in turn is easily proved by induction making use of the recurrence a(n) = n*a(n-1) + (-1)^n. - Peter Bala, Nov 21 2017
a(n) is the number of distinct possible solutions for a directed, no self loop containing graph (not necessarily connected) that has n vertices, and each vertex has an in- and out-degree of exactly 1. - Patrik Holopainen, Sep 18 2018
a(n) is the dimension of the kernel of the random-to-top and random-to-random shuffling operators over a collection of n objects (in a vector space of size n!), as noticed by M. Wachs and V. Reiner. See the Reiner, Saliola and Welker reference below. - Nadia Lafreniere, Jul 18 2019
a(n) is the number of distinct permutations for a Secret Santa gift exchange with n participants. - Patrik Holopainen, Dec 30 2019
a(2*n+1) is even. More generally, a(m*n+1) is divisible by m*n, which follows from a(n+1) = n*(a(n) + a(n-1)) = n*A000255(n-1) for n >= 1. a(2*n) is odd; in fact, a(2*n) == 1 (mod 8). Other divisibility properties include a(6*n) == 1 (mod 24), a(9*n+4) == a(9*n+7) == 0 (mod 9), a(10*n) == 1 (mod 40), a(11*n+5) == 0 (mod 11) and a(13*n+8 ) == 0 (mod 13). - Peter Bala, Apr 05 2022
Conjecture: a(n) with n > 2 is a perfect power only for n = 4 with a(4) = 3^2. This has been verified for n <= 1000. - Zhi-Wei Sun, Jan 09 2025

Examples

			a(2) = 1, a(3) = 2 and a(4) = 9 since the possibilities are {BA}, {BCA, CAB} and {BADC, BCDA, BDAC, CADB, CDAB, CDBA, DABC, DCAB, DCBA}. - _Henry Bottomley_, Jan 17 2001
The Boolean complex of the complete graph K_4 is homotopy equivalent to the wedge of 9 3-spheres.
Necklace problem for n = 6: partitions without part 1 and M2 numbers for n = 6: there are A002865(6) = 4 such partitions, namely (6), (2,4), (3^2) and (2^3) in A-St order with the M2 numbers 5!, 90, 40 and 15, respectively, adding up to 265 = a(6). This corresponds to 1 necklace with 6 beads, two necklaces with 2 and 4 beads respectively, two necklaces with 3 beads each and three necklaces with 2 beads each. - _Wolfdieter Lang_, Jun 01 2010
G.f. = 1 + x^2 + 9*x^3 + 44*x^4 + 265*x^5 + 1854*x^6 + 14833*x^7 + 133496*x^8 + ...
		

References

  • U. Abel, Some new identities for derangement numbers, Fib. Q., 56:4 (2018), 313-318.
  • M. Bona, Combinatorics of Permutations, Chapman & Hall/CRC, Boca Raton, Florida, 2004.
  • Miklos Bona, editor, Handbook of Enumerative Combinatorics, CRC Press, 2015, page 32.
  • R. A. Brualdi and H. J. Ryser: Combinatorial Matrix Theory, 1992, Section 7.2, p. 202.
  • Ch. A. Charalambides, Enumerative Combinatorics, Chapman & Hall/CRC, Boca Raton, Florida, 2002.
  • L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 182.
  • Florence Nightingale David and D. E. Barton, Combinatorial Chance. Hafner, NY, 1962, p. 168.
  • Florence Nightingale David, Maurice George Kendall, and D. E. Barton, Symmetric Function and Allied Tables, Cambridge, 1966, p. 263, Table 7.5.1, row 1.
  • P. R. de Montmort, On the Game of Thirteen (1713), reprinted in Annotated Readings in the History of Statistics, ed. H. A. David and A. W. F. Edwards, Springer-Verlag, 2001, pp. 25-29.
  • J. M. de Saint-Martin, "Le problème des rencontres" in Quadrature, No. 61, pp. 14-19, 2006, EDP-Sciences Les Ulis (France).
  • H. Doerrie, 100 Great Problems of Elementary Mathematics, Dover, NY, 1965, p. 19.
  • Leonhard Euler, Solution quaestionis curiosae ex doctrina combinationum, Mémoires Académie sciences St. Pétersburg 3 (1809/1810), 57-64; also E738 in his Collected Works, series I, volume 7, pages 435-440.
  • J. M. Gandhi, On logarithmic numbers, Math. Student, 31 (1963), 73-83.
  • A. Hald, A History of Probability and Statistics and Their Applications Before 1750, Wiley, NY, 1990 (Chapter 19).
  • Irving Kaplansky, John Riordan, The problème des ménages. Scripta Math. 12 (1946), 113-124. See Eq(1).
  • Arnold Kaufmann, "Introduction à la combinatorique en vue des applications." Dunod, Paris, 1968. See p. 92.
  • Florian Kerschbaum and Orestis Terzidis, Filtering for Private Collaborative Benchmarking, in Emerging Trends in Information and Communication Security, Lecture Notes in Computer Science, Volume 3995/2006.
  • E. Lozansky and C. Rousseau, Winning Solutions, Springer, 1996; see p. 152.
  • P. A. MacMahon, Combinatory Analysis, 2 vols., Chelsea, NY, 1960, see p. 102.
  • M. S. Petković, "Non-attacking rooks", Famous Puzzles of Great Mathematicians, pp. 265-268, Amer. Math. Soc.(AMS), 2009.
  • V. Reiner, F. Saliola, and V. Welker. Spectra of Symmetrized Shuffling Operators, Memoirs of the American Mathematical Society, vol. 228, Amer. Math. Soc., Providence, RI, 2014, pp. 1-121. See section VI.9.
  • J. Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, p. 65.
  • H. J. Ryser, Combinatorial Mathematics. Mathematical Association of America, Carus Mathematical Monograph 14, 1963, p. 23.
  • T. Simpson, Permutations with unique fixed and reflected points. Ars Combin. 39 (1995), 97-108.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • David Wells, The Penguin Dictionary of Curious and Interesting Numbers. Penguin Books, NY, 1986, Revised edition 1987. See p. 122.
  • D. B. West, Combinatorial Mathematics, Cambridge, 2021, p. 82.
  • H. S. Wilf, Generatingfunctionology, Academic Press, NY, 1990, p. 147, Eq. 5.2.9 (q=1).

Crossrefs

For the probabilities a(n)/n!, see A053557/A053556 and A103816/A053556.
A diagonal of A008291 and A068106. Column A008290(n,0).
A001120 has a similar recurrence.
For other derangement numbers see also A053871, A033030, A088991, A088992.
Pairwise sums of A002741 and A000757. Differences of A001277.
A diagonal in triangles A008305 and A010027.
a(n)/n! = A053557/A053556 = (N(n, n) of A103361)/(D(n, n) of A103360).
Column k=0 of A086764 and of A334715. Column k=1 of A364068.
Row sums of A216963 and of A323671.

Programs

  • Haskell
    a000166 n = a000166_list !! n
    a000166_list = 1 : 0 : zipWith (*) [1..]
                           (zipWith (+) a000166_list $ tail a000166_list)
    -- Reinhard Zumkeller, Dec 09 2012
    
  • Magma
    I:=[0,1]; [1] cat [n le 2 select I[n] else (n-1)*(Self(n-1)+Self(n-2)): n in [1..30]]; // Vincenzo Librandi, Jan 07 2016
  • Maple
    A000166 := proc(n) option remember; if n<=1 then 1-n else (n-1)*(procname(n-1)+procname(n-2)); fi; end;
    a:=n->n!*sum((-1)^k/k!, k=0..n): seq(a(n), n=0..21); # Zerinvary Lajos, May 17 2007
    ZL1:=[S,{S=Set(Cycle(Z,card>1))},labeled]: seq(count(ZL1,size=n),n=0..21); # Zerinvary Lajos, Sep 26 2007
    with (combstruct):a:=proc(m) [ZL,{ZL=Set(Cycle(Z,card>=m))},labeled]; end: A000166:=a(2):seq(count(A000166,size=n),n=0..21); # Zerinvary Lajos, Oct 02 2007
    Z := (x, m)->m!^2*sum(x^j/((m-j)!^2), j=0..m): R := (x, n, m)->Z(x, m)^n: f := (t, n, m)->sum(coeff(R(x, n, m), x, j)*(t-1)^j*(n*m-j)!, j=0..n*m): seq(f(0, n, 1), n=0..21); # Zerinvary Lajos, Jan 22 2008
    a:=proc(n) if `mod`(n,2)=1 then sum(2*k*factorial(n)/factorial(2*k+1), k=1.. floor((1/2)*n)) else 1+sum(2*k*factorial(n)/factorial(2*k+1), k=1..floor((1/2)*n)-1) end if end proc: seq(a(n),n=0..20); # Emeric Deutsch, Feb 23 2008
    G(x):=2*exp(-x)/(1-x): f[0]:=G(x): for n from 1 to 26 do f[n]:=diff(f[n-1],x) od: x:=0: seq(f[n]/2,n=0..21); # Zerinvary Lajos, Apr 03 2009
    seq(simplify(KummerU(-n, -n, -1)), n = 0..23); # Peter Luschny, May 10 2022
  • Mathematica
    a[0] = 1; a[n_] := n*a[n - 1] + (-1)^n; a /@ Range[0, 21] (* Robert G. Wilson v *)
    a[0] = 1; a[1] = 0; a[n_] := Round[n!/E] /; n >= 1 (* Michael Taktikos, May 26 2006 *)
    Range[0, 20]! CoefficientList[ Series[ Exp[ -x]/(1 - x), {x, 0, 20}], x]
    dr[{n_,a1_,a2_}]:={n+1,a2,n(a1+a2)}; Transpose[NestList[dr,{0,0,1},30]][[3]] (* Harvey P. Dale, Feb 23 2013 *)
    a[n_] := (-1)^n HypergeometricPFQ[{- n, 1}, {}, 1]; (* Michael Somos, Jun 01 2013 *)
    a[n_] := n! SeriesCoefficient[Exp[-x] /(1 - x), {x, 0, n}]; (* Michael Somos, Jun 01 2013 *)
    Table[Subfactorial[n], {n, 0, 21}] (* Jean-François Alcover, Jan 10 2014 *)
    RecurrenceTable[{a[n] == n*a[n - 1] + (-1)^n, a[0] == 1}, a, {n, 0, 23}] (* Ray Chandler, Jul 30 2015 *)
    Subfactorial[Range[0, 20]] (* Eric W. Weisstein, Dec 31 2017 *)
    nxt[{n_,a_}]:={n+1,a(n+1)+(-1)^(n+1)}; NestList[nxt,{0,1},25][[All,2]] (* Harvey P. Dale, Jun 01 2019 *)
  • Maxima
    s[0]:1$
    s[n]:=n*s[n-1]+(-1)^n$
    makelist(s[n],n,0,12); /* Emanuele Munarini, Mar 01 2011 */
    
  • PARI
    {a(n) = if( n<1, 1, n * a(n-1) + (-1)^n)}; /* Michael Somos, Mar 24 2003 */
    
  • PARI
    {a(n) = n! * polcoeff( exp(-x + x * O(x^n)) / (1 - x), n)}; /* Michael Somos, Mar 24 2003 */
    
  • PARI
    {a(n)=polcoeff(sum(m=0,n,m^m*x^m/(1+(m+1)*x+x*O(x^n))^(m+1)),n)} /* Paul D. Hanna */
    
  • PARI
    A000166=n->n!*sum(k=0,n,(-1)^k/k!) \\ M. F. Hasler, Jan 26 2012
    
  • PARI
    a(n)=if(n,round(n!/exp(1)),1) \\ Charles R Greathouse IV, Jun 17 2012
    
  • PARI
    apply( {A000166(n)=n!\/exp(n>0)}, [0..22]) \\ M. F. Hasler, Nov 09 2024
    
  • Python
    See Hobson link.
    
  • Python
    A000166_list, m, x = [], 1, 1
    for n in range(10*2):
        x, m = x*n + m, -m
        A000166_list.append(x) # Chai Wah Wu, Nov 03 2014
    

Formula

a(n) = A008290(n,0).
a(n) + A003048(n+1) = 2*n!. - D. G. Rogers, Aug 26 2006
a(n) = {(n-1)!/exp(1)}, n > 1, where {x} is the nearest integer function. - Simon Plouffe, March 1993 [This uses offset 1, see below for the version with offset 0. - Charles R Greathouse IV, Jan 25 2012]
a(0) = 1, a(n) = round(n!/e) = floor(n!/e + 1/2) for n > 0.
a(n) = n!*Sum_{k=0..n} (-1)^k/k!.
D-finite with recurrence a(n) = (n-1)*(a(n-1) + a(n-2)), n > 0.
a(n) = n*a(n-1) + (-1)^n.
E.g.f.: exp(-x)/(1-x).
a(n) = Sum_{k=0..n} binomial(n, k)*(-1)^(n-k)*k! = Sum_{k=0..n} (-1)^(n-k)*n!/(n-k)!. - Paul Barry, Aug 26 2004
The e.g.f. y(x) satisfies y' = x*y/(1-x).
Inverse binomial transform of A000142. - Ross La Haye, Sep 21 2004
In Maple notation, representation as n-th moment of a positive function on [-1, infinity]: a(n)= int( x^n*exp(-x-1), x=-1..infinity ), n=0, 1... . a(n) is the Hamburger moment of the function exp(-1-x)*Heaviside(x+1). - Karol A. Penson, Jan 21 2005
a(n) = A001120(n) - n!. - Philippe Deléham, Sep 04 2005
a(n) = Integral_{x=0..oo} (x-1)^n*exp(-x) dx. - Gerald McGarvey, Oct 14 2006
a(n) = Sum_{k=2,4,...} T(n,k), where T(n,k) = A092582(n,k) = k*n!/(k+1)! for 1 <= k < n and T(n,n)=1. - Emeric Deutsch, Feb 23 2008
a(n) = n!/e + (-1)^n*(1/(n+2 - 1/(n+3 - 2/(n+4 - 3/(n+5 - ...))))). Asymptotic result (Ramanujan): (-1)^n*(a(n) - n!/e) ~ 1/n - 2/n^2 + 5/n^3 - 15/n^4 + ..., where the sequence [1,2,5,15,...] is the sequence of Bell numbers A000110. - Peter Bala, Jul 14 2008
From William Vaughn (wvaughn(AT)cvs.rochester.edu), Apr 13 2009: (Start)
a(n) = Integral_{p=0..1} (log(1/(1-p)) - 1)^n dp.
Proof: Using the substitutions 1=log(e) and y = e(1-p) the above integral can be converted to ((-1)^n/e) Integral_{y=0..e} (log(y))^n dy.
From CRC Integral tables we find the antiderivative of (log(y))^n is (-1)^n n! Sum_{k=0..n} (-1)^k y(log(y))^k / k!.
Using the fact that e(log(e))^r = e for any r >= 0 and 0(log(0))^r = 0 for any r >= 0 the integral becomes n! * Sum_{k=0..n} (-1)^k / k!, which is line 9 of the Formula section. (End)
a(n) = exp(-1)*Gamma(n+1,-1) (incomplete Gamma function). - Mark van Hoeij, Nov 11 2009
G.f.: 1/(1-x^2/(1-2x-4x^2/(1-4x-9x^2/(1-6x-16x^2/(1-8x-25x^2/(1-... (continued fraction). - Paul Barry, Nov 27 2009
a(n) = Sum_{p in Pano1(n)} M2(p), n >= 1, with Pano1(n) the set of partitions without part 1, and the multinomial M2 numbers. See the characteristic array for partitions without part 1 given by A145573 in Abramowitz-Stegun (A-S) order, with A002865(n) the total number of such partitions. The M2 numbers are given for each partition in A-St order by the array A036039. - Wolfdieter Lang, Jun 01 2010
a(n) = row sum of A008306(n), n > 1. - Gary Detlefs, Jul 14 2010
a(n) = ((-1)^n)*(n-1)*hypergeom([-n+2, 2], [], 1), n>=1; 1 for n=0. - Wolfdieter Lang, Aug 16 2010
a(n) = (-1)^n * hypergeom([ -n, 1], [], 1), n>=1; 1 for n=0. From the binomial convolution due to the e.g.f. - Wolfdieter Lang, Aug 26 2010
Integral_{x=0..1} x^n*exp(x) = (-1)^n*(a(n)*e - n!).
O.g.f.: Sum_{n>=0} n^n*x^n/(1 + (n+1)*x)^(n+1). - Paul D. Hanna, Oct 06 2011
Abs((a(n) + a(n-1))*e - (A000142(n) + A000142(n-1))) < 2/n. - Seiichi Kirikami, Oct 17 2011
G.f.: hypergeom([1,1],[],x/(x+1))/(x+1). - Mark van Hoeij, Nov 07 2011
From Sergei N. Gladkovskii, Nov 25 2011, Jul 05 2012, Sep 23 2012, Oct 13 2012, Mar 09 2013, Mar 10 2013, Oct 18 2013: (Start)
Continued fractions:
In general, e.g.f. (1+a*x)/exp(b*x) = U(0) with U(k) = 1 + a*x/(1-b/(b-a*(k+1)/U(k+1))). For a=-1, b=-1: exp(-x)/(1-x) = 1/U(0).
E.g.f.: (1-x/(U(0)+x))/(1-x), where U(k) = k+1 - x + (k+1)*x/U(k+1).
E.g.f.: 1/Q(0) where Q(k) = 1 - x/(1 - 1/(1 - (k+1)/Q(k+1))).
G.f.: 1/U(0) where U(k) = 1 + x - x*(k+1)/(1 - x*(k+1)/U(k+1)).
G.f.: Q(0)/(1+x) where Q(k) = 1 + (2*k+1)*x/((1+x)-2*x*(1+x)*(k+1)/(2*x*(k+1)+(1+x)/ Q(k+1))).
G.f.: 1/Q(0) where Q(k) = 1 - 2*k*x - x^2*(k + 1)^2/Q(k+1).
G.f.: T(0) where T(k) = 1 - x^2*(k+1)^2/(x^2*(k+1)^2-(1-2*x*k)*(1-2*x-2*x*k)/T(k+1)). (End)
0 = a(n)*(a(n+1) + a(n+2) - a(n+3)) + a(n+1)*(a(n+1) + 2*a(n+2) - a(n+3)) + a(n+2)*a(n+2) if n>=0. - Michael Somos, Jan 25 2014
a(n) = Sum_{k = 0..n} (-1)^(n-k)*binomial(n,k)*(k + x)^k*(k + x + 1)^(n-k) = Sum_{k = 0..n} (-1)^(n-k)*binomial(n,k)*(k + x)^(n-k)*(k + x - 1)^k, for arbitrary x. - Peter Bala, Feb 19 2017
From Peter Luschny, Jun 20 2017: (Start)
a(n) = Sum_{j=0..n} Sum_{k=0..n} binomial(-j-1, -n-1)*abs(Stirling1(j, k)).
a(n) = Sum_{k=0..n} (-1)^(n-k)*Pochhammer(n-k+1, k) (cf. A008279). (End)
a(n) = n! - Sum_{j=0..n-1} binomial(n,j) * a(j). - Alois P. Heinz, Jan 23 2019
Sum_{n>=2} 1/a(n) = A281682. - Amiram Eldar, Nov 09 2020
a(n) = KummerU(-n, -n, -1). - Peter Luschny, May 10 2022
a(n) = (-1)^n*Sum_{k=0..n} Bell(k)*Stirling1(n+1, k+1). - Mélika Tebni, Jul 05 2022

Extensions

Minor edits by M. F. Hasler, Jan 16 2017

A008290 Triangle T(n,k) of rencontres numbers (number of permutations of n elements with k fixed points).

Original entry on oeis.org

1, 0, 1, 1, 0, 1, 2, 3, 0, 1, 9, 8, 6, 0, 1, 44, 45, 20, 10, 0, 1, 265, 264, 135, 40, 15, 0, 1, 1854, 1855, 924, 315, 70, 21, 0, 1, 14833, 14832, 7420, 2464, 630, 112, 28, 0, 1, 133496, 133497, 66744, 22260, 5544, 1134, 168, 36, 0, 1, 1334961, 1334960, 667485, 222480, 55650, 11088, 1890, 240, 45, 0, 1
Offset: 0

Views

Author

Keywords

Comments

This is a binomial convolution triangle (Sheffer triangle) of the Appell type: (exp(-x)/(1-x),x), i.e., the e.g.f. of column k is (exp(-x)/(1-x))*(x^k/k!). See the e.g.f. given by V. Jovovic below. - Wolfdieter Lang, Jan 21 2008
The formula T(n,k) = binomial(n,k)*A000166(n-k), with the derangements numbers (subfactorials) A000166 (see also the Charalambides reference) shows the Appell type of this triangle. - Wolfdieter Lang, Jan 21 2008
T(n,k) is the number of permutations of {1,2,...,n} having k pairs of consecutive right-to-left minima (0 is considered a right-to-left minimum for each permutation). Example: T(4,2)=6 because we have 1243, 1423, 4123, 1324, 3124 and 2134; for example, 1324 has right-to-left minima in positions 0-1,3-4 and 2134 has right-to-left minima in positions 0,2-3-4, the consecutive ones being joined by "-". - Emeric Deutsch, Mar 29 2008
T is an example of the group of matrices outlined in the table in A132382--the associated matrix for the sequence aC(0,1). - Tom Copeland, Sep 10 2008
A refinement of this triangle is given by A036039. - Tom Copeland, Nov 06 2012
This triangle equals (A211229(2*n,2*k)) n,k >= 0. - Peter Bala, Dec 17 2014

Examples

			exp((y-1)*x)/(1-x) = 1 + y*x + (1/2!)*(1+y^2)*x^2 + (1/3!)*(2 + 3*y + y^3)*x^3 + (1/4!)*(9 + 8*y + 6*y^2 + y^4)*x^4 + (1/5!)*(44 + 45*y + 20*y^2 + 10*y^3 + y^5)*x^5 + ...
Triangle begins:
       1
       0      1
       1      0     1
       2      3     0     1
       9      8     6     0    1
      44     45    20    10    0    1
     265    264   135    40   15    0   1
    1854   1855   924   315   70   21   0  1
   14833  14832  7420  2464  630  112  28  0 1
  133496 133497 66744 22260 5544 1134 168 36 0 1
...
From _Peter Bala_, Feb 13 2017: (Start)
The infinitesimal generator has integer entries given by binomial(n,k)*(n-k-1)! for n >= 2 and 0 <= k <= n-2 and begins
   0
   0  0
   1  0  0
   2  3  0  0
   6  8  6  0 0
  24 30 20 10 0 0
...
It is essentially A238363 (unsigned and omitting the main diagonal), A211603 (with different offset) and appears to be A092271, again without the main diagonal. (End)
		

References

  • Ch. A. Charalambides, Enumerative Combinatorics, Chapman & Hall/CRC, Boca Raton, Florida, 2002, p. 173, Table 5.2 (without row n=0 and column k=0).
  • R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics. Addison-Wesley, Reading, MA, 1990, p. 194.
  • Arnold Kaufmann, Introduction à la combinatorique en vue des applications, Dunod, Paris, 1968. See p. 92.
  • J. Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, p. 65.

Crossrefs

Mirror of triangle A098825.
Cf. A080955.
Cf. A000012, A000142 (row sums), A000354.
Cf. A170942. Sub-triangle of A211229.
T(2n,n) gives A281262.

Programs

  • Haskell
    a008290 n k = a008290_tabl !! n !! k
    a008290_row n = a008290_tabl !! n
    a008290_tabl = map reverse a098825_tabl
    -- Reinhard Zumkeller, Dec 16 2013
  • Maple
    T:= proc(n,k) T(n, k):= `if`(k=0, `if`(n<2, 1-n, (n-1)*
          (T(n-1, 0)+T(n-2, 0))), binomial(n, k)*T(n-k, 0))
        end:
    seq(seq(T(n, k), k=0..n), n=0..12);  # Alois P. Heinz, Mar 15 2013
  • Mathematica
    a[0] = 1; a[1] = 0; a[n_] := Round[n!/E] /; n >= 1 size = 8; Table[Binomial[n, k]a[n - k], {n, 0, size}, {k, 0, n}] // TableForm (* Harlan J. Brothers, Mar 19 2007 *)
    T[n_, k_] := Subfactorial[n-k]*Binomial[n, k]; Table[T[n, k], {n, 0, 10}, {k, 0, n}] // Flatten (* Jean-François Alcover, Jul 12 2017 *)
    T[n_, k_] := If[n<1, Boole[n==0 && k==0], T[n, k] = T[n-1, k-1] + T[n-1, k]*(n-1-k) + T[n-1, k+1]*(k+1)]; (* Michael Somos, Sep 13 2024 *)
    T[0, 0]:=1; T[n_, 0]:=T[n, 0]=n  T[n-1, 0]+(-1)^n; T[n_, k_]:=T[n, k]=n/k T[n-1, k-1];
    Flatten@Table[T[n, k], {n, 0, 9}, {k, 0, n}] (* Oliver Seipel, Nov 26 2024 *)
  • PARI
    {T(n, k) = if(k<0 || k>n, 0, n!/k! * sum(i=0, n-k, (-1)^i/i!))}; /* Michael Somos, Apr 26 2000 */
    

Formula

T(n, k) = T(n-1, k)*n + binomial(n, k)*(-1)^(n-k) = T(n, k-1)/k + binomial(n, k)*(-1)^(n-k)/(n-k+1) = T(n-1, k-1)*n/k = T(n-k, 0)*binomial(n, k) = A000166(n-k)*binomial(n,k) [with T(0, 0) = 1]; so T(n, n) = 1, T(n, n-1) = 0, T(n, n-2) = n*(n-1)/2 for n >= 0.
Sum_{k=0..n} T(n, k) = Sum_{k=0..n} k * T(n, k) = n! for all n > 0, n, k integers. - Wouter Meeussen, May 29 2001
From Vladeta Jovovic, Aug 12 2002: (Start)
O.g.f. for k-th column: (1/k!)*Sum_{i>=k} i!*x^i/(1+x)^(i+1).
O.g.f. for k-th row: k!*Sum_{i=0..k} (-1)^i/i!*(1-x)^i. (End)
E.g.f.: exp((y-1)*x)/(1-x). - Vladeta Jovovic, Aug 18 2002
E.g.f. for number of permutations with exactly k fixed points is x^k/(k!*exp(x)*(1-x)). - Vladeta Jovovic, Aug 25 2002
Sum_{k=0..n} T(n, k)*x^k is the permanent of the n X n matrix with x's on the diagonal and 1's elsewhere; for x = 0, 1, 2, 3, 4, 5, 6 see A000166, A000142, A000522, A010842, A053486, A053487, A080954. - Philippe Deléham, Dec 12 2003; for x = 1+i see A009551 and A009102. - John M. Campbell, Oct 11 2011
T(n, k) = Sum_{j=0..n} A008290(n, j)*k^(n-j) is the permanent of the n X n matrix with 1's on the diagonal and k's elsewhere; for k = 0, 1, 2 see A000012, A000142, A000354. - Philippe Deléham, Dec 13 2003
T(n,k) = Sum_{j=0..n} (-1)^(j-k)*binomial(j,k)*n!/j!. - Paul Barry, May 25 2006
T(n,k) = (n!/k!)*Sum_{j=0..n-k} ((-1)^j)/j!, 0 <= k <= n. From the Appell type of the triangle and the subfactorial formula.
T(n,0) = n*Sum_{j=0..n-1} (j/(j+1))*T(n-1,j), T(0,0)=1. From the z-sequence of this Sheffer triangle z(j)=j/(j+1) with e.g.f. (1-exp(x)*(1-x))/x. See the W. Lang link under A006232 for Sheffer a- and z-sequences. - Wolfdieter Lang, Jan 21 2008
T(n,k) = (n/k)*T(n-1,k-1) for k >= 1. See above. From the a-sequence of this Sheffer triangle a(0)=1, a(n)=0, n >= 1 with e.g.f. 1. See the W. Lang link under A006232 for Sheffer a- and z-sequences. - Wolfdieter Lang, Jan 21 2008
From Henk P. J. van Wijk, Oct 29 2012: (Start)
T(n,k) = T(n-1,k)*(n-1-k) + T(n-1,k+1)*(k+1) for k=0 and
T(n,k) = T(n-1,k-1) + T(n-1,k)*(n-1-k) + T(n-1,k+1)*(k+1) for k>=1.
(End)
T(n,k) = A098825(n,n-k). - Reinhard Zumkeller, Dec 16 2013
Sum_{k=0..n} k^2 * T(n, k) = 2*n! if n > 1. - Michael Somos, Jun 06 2017
From Tom Copeland, Jul 26 2017: (Start)
The lowering and raising operators of this Appell sequence of polynomials P(n,x) are L = d/dx and R = x + d/dL log[exp(-L)/(1-L)] = x-1 + 1/(1-L) = x + L + L^2 - ... such that L P(n,x) = n P(n-1,x) and R P(n,x) = P(n+1,x).
P(n,x) = (1-L)^(-1) exp(-L) x^n = (1+L+L^2+...)(x-1)^n = n! Sum_{k=0..n} (x-1)^k / k!.
The formalism of A133314 applies to the pair of entries A008290 and A055137.
The polynomials of this pair P_n(x) and Q_n(x) are umbral compositional inverses; i.e., P_n(Q.(x)) = x^n = Q_n(P.(x)), where, e.g., (Q.(x))^n = Q_n(x).
For more on the infinitesimal generator, noted by Bala below, see A238385. (End)
Sum_{k=0..n} k^m * T(n,k) = A000110(m)*n! if n >= m. - Zhujun Zhang, May 24 2019
Sum_{k=0..n} (k+1) * T(n,k) = A098558(n). - Alois P. Heinz, Mar 11 2022
From Alois P. Heinz, May 20 2023: (Start)
Sum_{k=0..n} (-1)^k * T(n,k) = A000023(n).
Sum_{k=0..n} (-1)^k * k * T(n,k) = A335111(n). (End)
T(n,k) = A145224(n,k)+A145225(n,k), refined by even and odd perms. - R. J. Mathar, Jul 06 2023

Extensions

Comments and more terms from Michael Somos, Apr 26 2000 and Christian G. Bower, Apr 26 2000

A002467 The game of Mousetrap with n cards (given n letters and n envelopes, how many ways are there to fill the envelopes so that at least one letter goes into its right envelope?).

Original entry on oeis.org

0, 1, 1, 4, 15, 76, 455, 3186, 25487, 229384, 2293839, 25232230, 302786759, 3936227868, 55107190151, 826607852266, 13225725636255, 224837335816336, 4047072044694047, 76894368849186894, 1537887376983737879, 32295634916658495460, 710503968166486900119
Offset: 0

Views

Author

Keywords

Comments

a(n) is the number of permutations in the symmetric group S_n that have a fixed point, i.e., they are not derangements (A000166). - Ahmed Fares (ahmedfares(AT)my-deja.com), May 08 2001
a(n+1)=p(n+1) where p(x) is the unique degree-n polynomial such that p(k)=k! for k=0,1,...,n. - Michael Somos, Oct 07 2003
The termwise sum of this sequence and A000166 gives the factorial numbers. - D. G. Rogers, Aug 26 2006, Jan 06 2008
a(n) is the number of deco polyominoes of height n and having in the last column an odd number of cells. A deco polyomino is a directed column-convex polyomino in which the height, measured along the diagonal, is attained only in the last column. Example: a(2)=1 because the horizontal domino is the only deco polyomino of height 2 having an odd number of cells in the last column. - Emeric Deutsch, May 08 2008
Starting (1, 4, 15, 76, 455, ...) = eigensequence of triangle A127899 (unsigned). - Gary W. Adamson, Dec 29 2008
(n-1) | a(n), hence a(n) is never prime. - Jonathan Vos Post, Mar 25 2009
a(n) is the number of permutations of [n] that have at least one fixed point = number of positive terms in n-th row of the triangle in A170942, n > 0. - Reinhard Zumkeller, Mar 29 2012
Numerator of partial sum of alternating harmonic series, provided that the denominator is n!. - Richard Locke Peterson, May 11 2020
a(n) is the number of terms in the polynomial expansion of the determinant of a n X n matrix that contains at least one diagonal element. - Adam Wang, May 28 2025

Examples

			G.f. = x + x^2 + 4*x^3 + 15*x^4 + 76*x^5 + 455*x^6 + 3186*x^7 + 25487*x^8 + ...
		

References

  • R. K. Guy, Unsolved Problems Number Theory, E37.
  • R. K. Guy and R. J. Nowakowski, "Mousetrap," in D. Miklos, V. T. Sos and T. Szonyi, eds., Combinatorics, Paul Erdős is Eighty. Bolyai Society Math. Studies, Vol. 1, pp. 193-206, 1993.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Row sums of A068106.
Column k=1 of A293211.
Column k=0 of A299789, A306234, and of A324362.

Programs

  • Maple
    a := proc(n) -add((-1)^i*binomial(n, i)*(n-i)!, i=1..n) end;
    a := n->-n!*add((-1)^k/k!, k=1..n): seq(a(n), n=0..20); # Zerinvary Lajos, May 25 2007
    a := n -> simplify(GAMMA(n+1) - GAMMA(n+1, -1)*exp(-1)):
    seq(a(n), n=0..20); # Peter Luschny, Feb 28 2017
  • Mathematica
    Denominator[k=1; NestList[1+1/(k++ #1)&,1,12]] (* Wouter Meeussen, Mar 24 2007 *)
    a[ n_] := If[ n < 0, 0, n! - Subfactorial[n]] (* Michael Somos, Jan 25 2014 *)
    a[ n_] := If[ n < 1, 0, n! - Round[ n! / E]] (* Michael Somos, Jan 25 2014 *)
    a[ n_] := If[ n < 0, 0, n! - (-1)^n HypergeometricPFQ[ {- n, 1}, {}, 1]](* Michael Somos, Jan 25 2014 *)
    a[ n_] := If[ n < 0, 0, n! SeriesCoefficient[ (1 - Exp[ -x] ) / (1 - x), {x, 0, n}]] (* Michael Somos, Jan 25 2014 *)
    RecurrenceTable[{a[n] == (n - 1) ( a[n - 1] + a[n - 2]), a[0] == 0, a[1] == 1}, a[n], {n, 20}] (* Ray Chandler, Jul 30 2015 *)
  • PARI
    {a(n) = if( n<1, 0, n * a(n-1) - (-1)^n)} /* Michael Somos, Mar 24 2003 */
    
  • PARI
    {a(n) = if( n<0, 0, n! * polcoeff( (1 - exp( -x + x * O(x^n))) / (1 - x), n))} /* Michael Somos, Mar 24 2003 */
    
  • PARI
    a(n) = if(n<1,0,subst(polinterpolate(vector(n,k,(k-1)!)),x,n+1))
    
  • PARI
    A002467(n) = if(n<1, 0, n*A002467(n-1)-(-1)^n); \\ Joerg Arndt, Apr 22 2013

Formula

a(n) = n! - A000166(n) = A000142(n) - A000166(n).
E.g.f.: (1 - exp(-x)) / (1 - x). - Michael Somos, Aug 11 1999
a(n) = (n-1)*(a(n-1) + a(n-2)), n > 1; a(1) = 1. - Michael Somos, Aug 11 1999
a(n) = n*a(n-1) - (-1)^n. - Michael Somos, Aug 11 1999
a(0) = 0, a(n) = floor(n!(e-1)/e + 1/2) for n > 0. - Michael Somos, Aug 11 1999
a(n) = - n! * Sum_{i=1..n} (-1)^i/i!. Limit_{n->infinity} a(n)/n! = 1 - 1/e. - Gerald McGarvey, Jun 08 2004
Inverse binomial transform of A002627. - Ross La Haye, Sep 21 2004
a(n) = (n-1)*(a(n-1) + a(n-2)), n > 1. - Gary Detlefs, Apr 11 2010
a(n) = n! - floor((n!+1)/e), n > 0. - Gary Detlefs, Apr 11 2010
For n > 0, a(n) = {(1-1/exp(1))*n!}, where {x} is the nearest integer. - Simon Plouffe, conjectured March 1993, added Feb 17 2011
0 = a(n) * (a(n+1) + a(n+2) - a(n+3)) + a(n+1) * (a(n+1) + 2*a(n+2) - a(n+3)) + a(n+2) * (a(n+2)) if n >= 0. - Michael Somos, Jan 25 2014
a(n) = Gamma(n+1) - Gamma(n+1, -1)*exp(-1). - Peter Luschny, Feb 28 2017
a(n) = Sum_{k=0..n-1} A047920(n-1,k). - Alois P. Heinz, Sep 01 2021

A030298 List of permutations of 1,2,3,...,n for n=1,2,3,..., in lexicographic order.

Original entry on oeis.org

1, 1, 2, 2, 1, 1, 2, 3, 1, 3, 2, 2, 1, 3, 2, 3, 1, 3, 1, 2, 3, 2, 1, 1, 2, 3, 4, 1, 2, 4, 3, 1, 3, 2, 4, 1, 3, 4, 2, 1, 4, 2, 3, 1, 4, 3, 2, 2, 1, 3, 4, 2, 1, 4, 3, 2, 3, 1, 4, 2, 3, 4, 1, 2, 4, 1, 3, 2, 4, 3, 1, 3, 1, 2, 4, 3, 1, 4, 2, 3, 2, 1, 4, 3, 2, 4, 1, 3, 4, 1, 2, 3, 4, 2, 1, 4, 1, 2, 3, 4, 1, 3, 2, 4, 2
Offset: 1

Views

Author

Keywords

Comments

Contains every finite sequence of distinct numbers, infinitely many times.

Examples

			The permutations can be written as
  1,
  12, 21,
  123, 132, 213, 231, 312, 321, etc.
Write them in order and insert commas.
		

Crossrefs

A030299 gives the initial portion of these same permutations as decimally encoded numbers.
Cf. A001563 (row lengths), A001286 (row sums).
Cf. A030496 for another ordering.
The same information is essentially given in A055089, but in more compact way, by skipping those permutations which start with a fixed element (cf. A220696).
A220660(n) tells the zero-based rank r of the n-th permutation in this sequence, among all finite permutations of the same size.
A220663(n) tells the zero-based position (from the left) of that a(n) in that permutation of rank r.
A084557(n) tells that the n-th term a(n) belongs to the a(n):th lexicographically ordered permutation from the start (its "global rank").
A220660(A084557(n)) tells the "local rank" of the permutation (amongst the permutations of the same size) to which the n-th term a(n) belongs.
(A130664(n),A084555(n)) = (1,1),(2,3),(4,5),(6,8),(9,11),(12,14),... gives the starting and ending offsets of the n-th permutation in this list.

Programs

  • Haskell
    import Data.List (permutations, sort)
    a030298 n k = a030298_tabf !! (n-1) (k-1)
    a030298_row = concat . sort . permutations . enumFromTo 1
    a030298_tabf = map a030298_row [1..]
    -- Reinhard Zumkeller, Mar 29 2012
    (MIT/GNU Scheme, with Antti Karttunen's intseq-library):
    ;; Note that in Scheme, vector indexing is zero-based.
    ;; Requires also A055089permvec from A055089.
    (define (A030298 n) (vector-ref (A030298permvec (A084556 (A084557 n)) (A220660 (A084557 n))) (A220663 n)))
    (define (A030298permvec size rank) (vector-reverse (vector1invert (A055089permvec size rank))))
    (define (vector1invert vec) (make-initialized-vector (vector-length vec) (lambda (i) (1+ (- (vector-length vec) (vector-ref vec i))))))
    (define (vector-reverse vec) (make-initialized-vector (vector-length vec) (lambda (i) (vector-ref vec (- (vector-length vec) i 1)))))
    
  • Mathematica
    f[n_] := Permutations[Range@ n, {n}]; Array[f, 4] // Flatten (* Robert G. Wilson v, Dec 18 2012 *)
  • Python
    from itertools import permutations, count, chain, islice
    def A030298_gen(): # generator of terms
        return chain.from_iterable(p for l in count(2) for p in permutations(range(1,l)))
    A030298_list = list(islice(A030298_gen(),30)) # Chai Wah Wu, Mar 21 2022

Formula

Start with 1, then 12 and 21, then the 6 permutations of 123 in lexical order: 123, 132, 213, 231, 312, 321 and so on.

Extensions

Entry revised by N. J. A. Sloane, Feb 02 2006
Keyword tabf added by Reinhard Zumkeller, Mar 29 2012

A000240 Rencontres numbers: number of permutations of [n] with exactly one fixed point.

Original entry on oeis.org

1, 0, 3, 8, 45, 264, 1855, 14832, 133497, 1334960, 14684571, 176214840, 2290792933, 32071101048, 481066515735, 7697064251744, 130850092279665, 2355301661033952, 44750731559645107, 895014631192902120, 18795307255050944541, 413496759611120779880
Offset: 1

Views

Author

Keywords

Comments

a(n) is also the number of permutations of [n] having no circular succession. A circular succession in a permutation p of [n] is either a pair p(i), p(i+1), where p(i+1)=p(i)+1 or the pair p(n), p(1) if p(1)=p(n)+1. a(4)=8 because we have 1324, 1432, 4132, 2143, 2413, 3214, 3241, and 4321. - Emeric Deutsch, Sep 06 2010
a(n) is also the number of permutations of [n] having no substring in {12, 23, ..., (n-1)n, n1}. For example, a(4) = 8 since we have 1324, 1432, 4213, 2143, 2431, 3214, 3142, 4321 (different from permutations having no circular succession). - Enrique Navarrete, Oct 07 2016
a(n-1) is also the number of permutations of [n] that allow the substring n1 in the set of permutations of [n] having no substring in {12, 23, ..., (n-1)n}. For example, for n=5 the 8 permutations in S5 having no substring in {12,23,34,45} that allow the substring 51 are {51324,51432,25143,24351,35142,32514,42513,43251} (see link). - Enrique Navarrete, Jan 11 2017
From Enrique Navarrete, Mar 25 2017: (Start)
Let D(n,k) be the set of permutations on [n] that for fixed k, 0 < k < n, avoid substrings j(j+k) for 1 <= j <= n - k, and avoid substrings j(j+k) (mod n) for n-k < j <= n. Then the number of permutations in D(n,k) with k relative prime to n, n>=2, is given by a(n). For example, the forbidden substrings in D(4,3) are {14;21,32,43} (the forbidden substrings (mod 4) are written after the semicolon and lie below the diagonal in the chessboard below):
1 2 3 4
1 |||_|x|
2 |x|||_|
3 ||x||_|
4 |||x|_|
_
Then since 4 and 3 are relatively prime, a(4)=8, and the permutations in D(4,3) are 1234, 1342, 2341, 2413, 3124, 3412, 4123, 4231.
For another example, the forbidden substrings in D(8,5) are {16,27,38;41, 52,63,74,85} and the number of permutations in D(8,5) is a(8)=14832 (see the "K-Shift Forbidden Substrings" link).
(End)

Examples

			a(3) = 3 because the permutations of {1,2,3} with exactly one fixed point are the transpositions (1 2), (1 3) and (2 3).
a(4) = 8 because for each element x of {1,2,3,4} there are exactly two permutations which leave only x invariant, namely the two circular permutations of the three remaining numbers, one being the inverse (and the square) of the other. - _M. F. Hasler_, Jan 16 2017
		

References

  • Kaufmann, Arnold. "Introduction à la combinatorique en vue des applications." Dunod, Paris, 1968. See p. 92.
  • J. Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, p. 65.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • N. Ya. Vilenkin, Combinatorics, p. 56, eq.(13), F_n = a(n). Academic Press, 1971.

Crossrefs

A diagonal of A008291.

Programs

  • Maple
    G(x):=exp(-x)/(1-x)*x: f[0]:=G(x): for n from 1 to 26 do f[n]:=diff(f[n-1],x) od: x:=0: seq(f[n],n=1..22);# Zerinvary Lajos, Apr 03 2009
    A000240 := proc(n)
            n!*add((-1)^k/k!,k=0..n-1) ;
    end proc: # R. J. Mathar, Jul 09 2012
    a := n -> (-1)^(n-1)*n*hypergeom([1,1-n], [], 1):
    seq(simplify(a(n)), n=1..22); # Peter Luschny, May 09 2017
  • Mathematica
    Table[Subfactorial[n]-(-1)^n, {n, 1, 25}] (* Zerinvary Lajos, Jul 10 2009, updated for offset 1 by Jean-François Alcover, Jan 10 2014 *)
    Table[n!*Sum[(-1)^k/k!,{k,0,n-1}],{n,1,25}] (* Vaclav Kotesovec, Sep 26 2012 *)
    Table[n!*SeriesCoefficient[x*E^(-x)/(1-x),{x,0,n}],{n,1,25}] (* Vaclav Kotesovec, Sep 26 2012 *)
    Rest[With[{nn=30},CoefficientList[Series[x Exp[-x]/(1-x),{x,0,nn}],x] Range[0,nn]!]] (* Harvey P. Dale, May 29 2025 *)
  • PARI
    x='x+O('x^66); Vec( serlaplace(x*exp(-x)/(1-x)) ) \\ Joerg Arndt, Feb 19 2014
    
  • PARI
    a(n,p=vector(n,i,i),s=x->!x)=sum(k=1,n!,#select(s,numtoperm(n,k)-p)==1) \\ For illustrative purpose. #select(...) is almost twice as fast as {p=numtoperm(n,k);sum(i=1,n,p[i]==i)}. - M. F. Hasler, Jan 16 2017
  • Python
    a = 0
    for i in range(1, 51):
        a = (a - (-1)**i)*i
        print(a, end=',') # Alex Ratushnyak, Apr 20 2012
    

Formula

E.g.f.: x*exp(-x)/(1-x). [Corrected by Vaclav Kotesovec, Sep 26 2012]
a(n) = Sum_{k=0..n-1} (-1)^k*n!/k!.
a(n) = A180188(n,0). - Emeric Deutsch, Sep 06 2010
E.g.f.: x*A(x) where A(x) is the e.g.f. for A000166. - Geoffrey Critzer, Jan 14 2012
a(n) = n*a(n-1) - (-1)^n*n = A000166(n) - (-1)^n = n*A000166(n-1) = A000387(n+1)*2/(n+1) = A000449(n+2)*6/((n+1)*(n+2)).
a(n) = n*floor(((n-1)!+1)/e), n > 1. - Gary Detlefs, Jul 13 2010
Limit_{n->infinity} n!/a(n) = e = 2.71828...
a(n) = (n-1)*(a(n-1)+a(n-2)) + (-1)^(n-1), n>=2. - Enrique Navarrete, Oct 07 2016
O.g.f.: Sum_{k>=1} k!*x^k/(1 + x)^(k+1). - Ilya Gutkovskiy, Apr 13 2017
a(n) = (-1)^(n-1)*n*hypergeom([1,1-n], [], 1). - Peter Luschny, May 09 2017

A000387 Rencontres numbers: number of permutations of [n] with exactly two fixed points.

Original entry on oeis.org

0, 0, 1, 0, 6, 20, 135, 924, 7420, 66744, 667485, 7342280, 88107426, 1145396460, 16035550531, 240533257860, 3848532125880, 65425046139824, 1177650830516985, 22375365779822544, 447507315596451070, 9397653627525472260, 206748379805560389951
Offset: 0

Views

Author

Keywords

Comments

Also: odd permutations of length n with no fixed points. - Martin Wohlgemuth (mail(AT)matroid.com), May 31 2003
Also number of cycles of length 2 in all derangements of [n]. Example: a(4)=6 because in the derangements of [4], namely (1432), (1342), (13)(24), (1423), (12)(34), (1243), (1234), (1324), and (14)(23), we have altogether 6 cycles of length 2. - Emeric Deutsch, Mar 31 2009

Examples

			a(4)=6 because we have 1243, 1432, 1324, 4231, 3214, and 2134. - _Emeric Deutsch_, Mar 31 2009
		

References

  • A. Kaufmann, Introduction à la combinatorique en vue des applications, Dunod, Paris, 1968 (see p. 92).
  • J. Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, p. 65.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Column k=2 of A008290.
Cf. A003221.
A diagonal of A008291.
Cf. A170942.

Programs

  • Maple
    A000387:= n-> -add((n-1)!*add((-1)^k/(k-1)!, j=0..n-1), k=1..n-1)/2: seq(A000387(n), n=0..25); # Zerinvary Lajos, May 18 2007
    A000387 := n -> (-1)^n*(hypergeom([-n,1],[],1)+n-1)/2:
    seq(simplify(A000387(n)), n=0..22); # Peter Luschny, May 09 2017
  • Mathematica
    Table[Subfactorial[n - 2]*Binomial[n, 2], {n, 0, 22}] (* Zerinvary Lajos, Jul 10 2009 *)
  • PARI
    my(x='x+O('x^33)); concat([0,0], Vec( serlaplace(exp(-x)/(1-x)*(x^2/2!)) ) ) \\ Joerg Arndt, Feb 19 2014
    
  • PARI
    a(n) = ( n!*sum(r=2, n, (-1)^r/r!) - (-1)^(n-1)*(n-1))/2; \\ Michel Marcus, Apr 22 2016
  • Python
    A145221_list, m, x = [], 1, 0
    for n in range(201):
        x, m = x*n + m*(n*(n-1)//2), -m
        A145221_list.append(x) # Chai Wah Wu, Sep 23 2014
    

Formula

a(n) = Sum_{j=2..n-2} (-1)^j*n!/(2!*j!) = A008290(n,2).
a(n) = (n!/2) * Sum_{i=0..n-2} ((-1)^i)/i!.
a(n) = A000166(n) - A003221(n).
a(n) = A000166(n-2)*binomial(n, 2). - David Wasserman, Aug 13 2004
E.g.f.: z^2*exp(-z)/(2*(1-z)). - Emeric Deutsch, Jul 22 2009
a(n) ~ n!*exp(-1)/2. - Steven Finch, Mar 11 2022
a(n) = n*a(n-1) + (-1^n)*n*(n-1)/2, a(0) = 0. - Chai Wah Wu, Sep 23 2014
a(n) = A003221(n) + (-1)^n*(n-1) (see Miska). - Michel Marcus, Aug 11 2015
O.g.f.: (1/2)*Sum_{k>=2} k!*x^k/(1 + x)^(k+1). - Ilya Gutkovskiy, Apr 13 2017
D-finite with recurrence +(-n+2)*a(n) +n*(n-3)*a(n-1) +n*(n-1)*a(n-2)=0. - R. J. Mathar, Jul 06 2023

Extensions

Prepended a(0)=a(1)=0, Joerg Arndt, Apr 22 2016

A008291 Triangle of rencontres numbers.

Original entry on oeis.org

1, 2, 3, 9, 8, 6, 44, 45, 20, 10, 265, 264, 135, 40, 15, 1854, 1855, 924, 315, 70, 21, 14833, 14832, 7420, 2464, 630, 112, 28, 133496, 133497, 66744, 22260, 5544, 1134, 168, 36, 1334961, 1334960, 667485, 222480, 55650, 11088, 1890, 240, 45, 14684570
Offset: 2

Views

Author

Keywords

Comments

T(n,k) = number of permutations of n elements with k fixed points.
T(n,n-1)=0 and T(n,n)=1 are omitted from the array. - Geoffrey Critzer, Nov 28 2011.

Examples

			Triangle begins:
       1
       2      3
       9      8     6
      44     45    20    10
     265    264   135    40   15
    1854   1855   924   315   70   21
   14833  14832  7420  2464  630  112  28
  133496 133497 66744 22260 5544 1134 168 36
  ...
		

References

  • R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics. Addison-Wesley, Reading, MA, 1990, p. 194.
  • Kaufmann, Arnold. "Introduction a la combinatorique en vue des applications." Dunod, Paris, 1968. See p. 92.
  • J. Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, p. 65.

Crossrefs

Row sums give A033312.
Cf. A320582.

Programs

  • Maple
    T:= proc(n, k) T(n, k):= `if`(k=0, `if`(n<2, 1-n, (n-1)*
          (T(n-1, 0)+T(n-2, 0))), binomial(n, k)*T(n-k, 0))
        end:
    seq(seq(T(n, k), k=0..n-2), n=2..12);  # Alois P. Heinz, Mar 17 2013
  • Mathematica
    Prepend[Flatten[f[list_]:=Select[list,#>1&];Map[f,Drop[Transpose[Table[d = Exp[-x]/(1 - x);Range[0, 10]! CoefficientList[Series[d x^k/k!, {x, 0, 10}],x], {k, 0, 8}]], 3]]], 1] (* Geoffrey Critzer, Nov 28 2011 *)
  • PARI
    T(n, k)= if(k<0 || k>n, 0, n!/k!*sum(i=0, n-k, (-1)^i/i!))

Formula

T(n,k) = binomial(n,k)*A000166(n-k) = A008290(n,k).
E.g.f. for column k: (x^k/k!)(exp(-x)/(1-x)). - Geoffrey Critzer, Nov 28 2011
Row generating polynomials appear to be given by -1 + sum {k = 0..n} (-1)^(n+k)*C(n,k)*(1+k*x)^(n-k)*(2+(k-1)*x)^k. - Peter Bala, Dec 29 2011

Extensions

Comments and more terms from Michael Somos, Apr 26 2000

A000475 Rencontres numbers: number of permutations of [n] with exactly 4 fixed points.

Original entry on oeis.org

1, 0, 15, 70, 630, 5544, 55650, 611820, 7342335, 95449640, 1336295961, 20044438050, 320711010620, 5452087178160, 98137569209940, 1864613814984984, 37292276299704525, 783137802293789040, 17229031650463366195, 396267727960657413630
Offset: 4

Views

Author

Keywords

References

  • J. Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, p. 65.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A008290.
A diagonal of A008291.
Cf. A170942.

Programs

  • Maple
    a:=n->sum(n!*sum((-1)^k/(k-3)!, j=0..n), k=3..n): seq(-a(n)/4!, n=3..22); # Zerinvary Lajos, May 25 2007
    G(x):=exp(-x)/(1-x)*(x^4/4!): f[0]:=G(x): for n from 1 to 26 do f[n]:=diff(f[n-1],x) od: x:=0: seq(f[n],n=4..23); # Zerinvary Lajos, Apr 03 2009
  • Mathematica
    Table[Subfactorial[n - 4]*Binomial[n, 4], {n, 4, 23}] (* Zerinvary Lajos, Jul 10 2009 *)
  • PARI
    x='x+O('x^66); Vec( serlaplace(exp(-x)/(1-x)*(x^4/4!)) ) \\ Joerg Arndt, Feb 19 2014
    
  • Python
    from sympy import binomial
    A000475_list, m, x = [], 1, 0
    for n in range(4,100):
        x, m = x*n + m*binomial(n,4), -m
        A000475_list.append(x) # Chai Wah Wu, Nov 01 2014

Formula

a(n) = sum((-1)^j*n!/(4!*j!), j=2..n-4) = A008290(n,4).
a(n) = A000166(n)*binomial(n+4, 4). - Robert Goodhand (robert(AT)rgoodhand.fsnet.co.uk), Nov 08 2001
E.g.f.: (exp(-x)/(1-x))*(x^4/4!). In general, for k fixed points:(exp(-x)/(1-x)) * (x^k/k!). - Wenjin Woan, Nov 22 2008
a(n) ~ n! * exp(-1)/24, in general a(n) ~ n! * exp(-1)/k!. - Vaclav Kotesovec, Mar 16 2014
a(n) = n*a(n-1) + (-1)^n*binomial(n,4) with a(n) = 0 for n = 0,1,2,3. - Chai Wah Wu, Nov 01 2014
D-finite with recurrence (-n+4)*a(n) +n*(n-5)*a(n-1) +n*(n-1)*a(n-2)=0. - R. J. Mathar, Nov 02 2015
O.g.f.: (1/24)*Sum_{k>=4} k!*x^k/(1 + x)^(k+1). - Ilya Gutkovskiy, Apr 13 2017

Extensions

Formula corrected by Sean A. Irvine, Oct 26 2010

A000449 Rencontres numbers: number of permutations of [n] with exactly 3 fixed points.

Original entry on oeis.org

1, 0, 10, 40, 315, 2464, 22260, 222480, 2447445, 29369120, 381798846, 5345183480, 80177752655, 1282844041920, 21808348713320, 392550276838944, 7458455259940905, 149169105198816960, 3132551209175157490, 68916126601853463240
Offset: 3

Views

Author

Keywords

References

  • J. Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, p. 65.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A008290.
A diagonal of A008291.
Cf. A170942.

Programs

  • Maple
    # with k fixed-points:
    G:=exp(-z)*z^k/((1-z)*k!: Gser:=series(G,z,21):
    for n from k to 20 do a(n)=n!*coeff(Gser,z,n): end do: # Paul Weisenhorn, May 30 2010
  • Mathematica
    Table[Subfactorial[n - 3]*Binomial[n, 3], {n, 3, 22}] (* Zerinvary Lajos, Jul 10 2009 *)
  • PARI
    my(x='x+O('x^66)); Vec( serlaplace(exp(-x)/(1-x)*(x^3/3!)) ) \\ Joerg Arndt, Feb 19 2014
    
  • Python
    A000449_list, m, x = [], 1, 0
    for n in range(3,21):
        x, m = x*n + m*(n*(n-1)*(n-2)//6), -m
        A000449_list.append(x) # Chai Wah Wu, Sep 23 2014

Formula

a(n) = Sum_{j=2..n-3} (-1)^j*n!/(3!*j!) = A008290(n,3).
For n >= 3 a(n) = C(n, 3) * A000166(n-3) = 1/6 * n! * Sum_{k=0..n-3} (-1)^k/k!. - Dan Fux (dan.fux(AT)OpenGaia.com or danfux(AT)OpenGaia.com), Apr 14 2001
E.g.f.: 1/(exp(x)*(1-x))*(x^3)/6. - Wenjin Woan, Nov 20 2008
E.g.f.: x^3*exp(-x)/(3!*(1-x)). - Geoffrey Critzer, Nov 03 2012
a(n) ~ n! * exp(-1)/6. - Vaclav Kotesovec, Mar 17 2014
a(n) = n*a(n-1) - (-1^n)*n*(n-1)*(n-2)/6, a(n) = 0 for n= 0, 1, 2. - Chai Wah Wu, Sep 23 2014
O.g.f.: (1/6)*Sum_{k>=3} k!*x^k/(1 + x)^(k+1). - Ilya Gutkovskiy, Apr 13 2017
D-finite with recurrence (-n+3)*a(n) +n*(n-4)*a(n-1) +n*(n-1)*a(n-2)=0. - R. J. Mathar, Jul 06 2023
Showing 1-10 of 18 results. Next