Juan S. Auli has authored 20 sequences. Here are the ten most recent ones:
A328500
Number of inversion sequences of length n avoiding the consecutive pattern 102.
Original entry on oeis.org
1, 1, 2, 6, 22, 96, 492, 2902, 19350, 143918, 1181540, 10614698, 103589738, 1091367634, 12346368424, 149276823258, 1921099070062, 26220186000950, 378308908684300, 5753387612678314, 91988260677198002, 1542570178562361018, 27072325866355742048
Offset: 0
- Alois P. Heinz, Table of n, a(n) for n = 0..250
- Juan S. Auli, Pattern Avoidance in Inversion Sequences, Ph. D. thesis, Dartmouth College, ProQuest Dissertations Publishing (2020), 27964164.
- Juan S. Auli, Sergi Elizalde, Consecutive Patterns in Inversion Sequences, arXiv:1904.02694 [math.CO], 2019. See Table 3.
-
b:= proc(n, j, t) option remember; `if`(n=0, 1, add(
`if`(i<=j or i>=t, b(n-1, i, j), 0), i=1..n))
end:
a:= n-> b(n, 0$2):
seq(a(n), n=0..25); # Alois P. Heinz, Oct 18 2019
-
b[n_, j_, t_] := b[n, j, t] = If[n == 0, 1, Sum[If[i <= j || i >= t, b[n - 1, i, j], 0], {i, 1, n}]];
a[n_] := b[n, 0, 0];
a /@ Range[0, 25] (* Jean-François Alcover, Mar 01 2020, after Alois P. Heinz *)
A328507
Number of inversion sequences of length n avoiding the consecutive pattern 101.
Original entry on oeis.org
1, 1, 2, 6, 23, 109, 619, 4113, 31352, 269841, 2589026, 27404677, 317265161, 3988181568, 54099618419, 787705115000, 12253696410675, 202831037178017, 3559585021719875, 66018657264425355, 1290284788431977106, 26505045303122642171, 570918508059059670322
Offset: 0
- Alois P. Heinz, Table of n, a(n) for n = 0..250
- Juan S. Auli, Pattern Avoidance in Inversion Sequences, Ph. D. thesis, Dartmouth College, ProQuest Dissertations Publishing (2020), 27964164.
- Juan S. Auli, Sergi Elizalde, Consecutive Patterns in Inversion Sequences, arXiv:1904.02694 [math.CO], 2019. See Table 4.
-
b:= proc(n, j, t) option remember; `if`(n=0, 1, add(
`if`(i<=j or i<>t, b(n-1, i, j), 0), i=1..n))
end:
a:= n-> b(n, 0$2):
seq(a(n), n=0..25); # Alois P. Heinz, Oct 18 2019
-
b[n_, j_, t_] := b[n, j, t] = If[n == 0, 1, Sum[If[i <= j || i != t, b[n-1, i, j], 0], {i, 1, n}]];
a[n_] := b[n, 0, 0];
a /@ Range[0, 25] (* Jean-François Alcover, Mar 19 2020, after Alois P. Heinz *)
A328504
Number of inversion sequences of length n avoiding the consecutive pattern 010.
Original entry on oeis.org
1, 1, 2, 5, 17, 76, 417, 2701, 20199, 171329, 1624851, 17036586, 195685618, 2443572835, 32959210808, 477542545691, 7396931591165, 121976733648960, 2133460758692093, 39450254899737811, 768950119933799815, 15757352298761474101, 338663233082663363407
Offset: 0
- Alois P. Heinz, Table of n, a(n) for n = 0..250
- Juan S. Auli, Pattern Avoidance in Inversion Sequences, Ph. D. thesis, Dartmouth College, ProQuest Dissertations Publishing (2020), 27964164.
- Juan S. Auli, Sergi Elizalde, Consecutive Patterns in Inversion Sequences, arXiv:1904.02694 [math.CO], 2019. See Table 4.
-
b:= proc(n, j, t) option remember; `if`(n=0, 1, add(
`if`(i>=j or i<>t, b(n-1, i, j), 0), i=1..n))
end:
a:= n-> b(n, 0$2):
seq(a(n), n=0..25); # Alois P. Heinz, Oct 18 2019
-
b[n_, j_, t_] := b[n, j, t] = If[n == 0, 1, Sum[If[i >= j || i != t, b[n - 1, i, j], 0], {i, 1, n}]];
a[n_] := b[n, 0, 0];
a /@ Range[0, 25] (* Jean-François Alcover, Mar 12 2020, after Alois P. Heinz *)
A328501
Number of inversion sequences of length n avoiding the consecutive pattern 201.
Original entry on oeis.org
1, 1, 2, 6, 24, 118, 684, 4548, 34036, 282696, 2577936, 25589100, 274539856, 3164909164, 39006958856, 511759353776, 7120140764224, 104703385864788, 1622530610142744, 26425922582118000, 451264786489454168, 8062192403534869432, 150395837509736576208
Offset: 0
- Vaclav Kotesovec, Table of n, a(n) for n = 0..465
- Juan S. Auli, Pattern Avoidance in Inversion Sequences, Ph. D. thesis, Dartmouth College, ProQuest Dissertations Publishing (2020), 27964164.
- Juan S. Auli, Sergi Elizalde, Consecutive Patterns in Inversion Sequences, arXiv:1904.02694 [math.CO], 2019. See Table 3.
A328441
Number of inversion sequences of length n avoiding the consecutive pattern 100.
Original entry on oeis.org
1, 1, 2, 6, 23, 109, 618, 4098, 31173, 267809, 2565520, 27120007, 313616532, 3938508241, 53381045786, 776672993274, 12074274033482, 199746500391688, 3503656507826887, 64951437702821877, 1268898555348831913, 26055882443142671038, 561050228044941209930, 12641053014560238560492, 297439800300471548183778
Offset: 0
Note that a(4)=23. Indeed, of the 24 inversion sequences of length 4, the only one that does not avoid the consecutive pattern 100 is 0100.
Similarly, 0110 is the only inversion sequence of length 4 that does not avoid the consecutive pattern 110.
- Vaclav Kotesovec, Table of n, a(n) for n = 0..448
- Juan S. Auli, Pattern Avoidance in Inversion Sequences, Ph. D. thesis, Dartmouth College, ProQuest Dissertations Publishing (2020), 27964164.
- Juan S. Auli and Sergi Elizalde, Consecutive Patterns in Inversion Sequences, arXiv:1904.02694 [math.CO], 2019.
- Juan S. Auli and Sergi Elizalde, Consecutive patterns in inversion sequences II: avoiding patterns of relations, arXiv:1906.07365 [math.CO], 2019.
- Juan S. Auli and Sergi Elizalde, Wilf equivalences between vincular patterns in inversion sequences, arXiv:2003.11533 [math.CO], 2020.
Cf.
A328357,
A328358,
A328429,
A328430,
A328431,
A328432,
A328433,
A328434,
A328435,
A328436,
A328437,
A328438,
A328439,
A328440,
A328442
-
# after Alois P. Heinz in A328357
b := proc(n, x, t) local i; option remember; `if`(n = 0, 1, add(`if`(t and x < i, 0, b(n - 1, i, i = x)), i = 0 .. n - 1)); end proc;
a := n -> b(n, -1, false);
seq(a(n), n = 0 .. 24);
-
i100[1] = 1; i100[2] = 2; i100[n_] := i100[n] = Sum[s100[n, k], {k, 0, n - 1}]; s100[n_, k_] := s100[n, k] = i100[n - 1] - Sum[s100[n - 2, j], {j, k + 1, n - 3}]; Flatten[{1, Table[i100[m], {m, 1, 25}]}] (* Vaclav Kotesovec, Oct 18 2019 *)
A328442
Number of inversion sequences of length n avoiding the consecutive pattern 210.
Original entry on oeis.org
1, 1, 2, 6, 24, 118, 684, 4554, 34192, 285558, 2624496, 26315990, 285828324, 3342566724, 41869664320, 559265742918, 7934746600620, 119162454310392, 1888417811354292, 31492626988890798, 551302582228438512, 10107905106374914860, 193700015975819881008, 3872391687779493752340, 80623321999146782133372
Offset: 0
Note that a(5)=118. Indeed, of the 120 inversion sequences of length 5, the only ones that do not avoid the consecutive patterns 210 are 00210 and 01210.
- Vaclav Kotesovec, Table of n, a(n) for n = 0..460
- Juan S. Auli, Pattern Avoidance in Inversion Sequences, Ph. D. thesis, Dartmouth College, ProQuest Dissertations Publishing (2020), 27964164.
- Juan S. Auli and Sergi Elizalde, Consecutive Patterns in Inversion Sequences, arXiv:1904.02694 [math.CO], 2019.
- Juan S. Auli and Sergi Elizalde, Consecutive patterns in inversion sequences II: avoiding patterns of relations, arXiv:1906.07365 [math.CO], 2019.
Cf.
A328357,
A328358,
A328429,
A328430,
A328431,
A328432,
A328433,
A328434,
A328435,
A328436,
A328437,
A328438,
A328439,
A328440,
A328441.
-
# after Alois P. Heinz in A328357
b := proc(n, x, t) option remember; `if`(n = 0, 1, add(
`if`(t and x < i, 0, b(n - 1, i, x < i)), i = 0 .. n - 1))
end proc:
a := n -> b(n, n, false):
seq(a(n), n = 0 .. 24);
-
b[n_, x_, t_] := b[n, x, t] = If[n == 0, 1, Sum[If[t && x < i, 0, b[n - 1, i, x < i]], {i, 0, n - 1}]];
a[n_] := b[n, n, False];
a /@ Range[0, 24] (* Jean-François Alcover, Mar 02 2020, after Alois P. Heinz in A328357 *)
A328440
Number of inversion sequences of length n avoiding the consecutive patterns 000 and 100.
Original entry on oeis.org
1, 1, 2, 5, 18, 81, 448, 2920, 21955, 186981, 1779170, 18706222, 215364181, 2694650157, 36408144034, 528302958022, 8193953571315, 135277259197031, 2368556730208679, 43838335667451773, 855200666797199814, 17538187897491897945, 377199969925672569364, 8489656058119117230574
Offset: 0
The a(4)=18 length 4 inversion sequences avoiding the consecutive patterns 000 and 100 are 0010, 0110, 0020, 0120, 0101, 0011, 0021, 0121, 0102, 0012, 0112, 0022, 0122, 0103, 0013, 0113, 0023, and 0123.
Cf.
A328357,
A328358,
A328429,
A328430,
A328431,
A328432,
A328433,
A328434,
A328435,
A328436,
A328437,
A328438,
A328439,
A328441,
A328442.
-
# after Alois P. Heinz in A328357
b := proc(n, x, t) option remember; `if`(n = 0, 1, add(
`if`(t and x <= i, 0, b(n - 1, i, i = x)), i = 0 .. n - 1))
end proc:
a := n -> b(n, -1, false):
seq(a(n), n = 0 .. 24);
-
b[n_, x_, t_] := b[n, x, t] = If[n == 0, 1, Sum[If[t && x <= i, 0, b[n - 1, i, i == x]], {i, 0, n - 1}]];
a[n_] := b[n, -1, False];
a /@ Range[0, 24] (* Jean-François Alcover, Mar 02 2020 after Alois P. Heinz in A328357 *)
A328439
Number of inversion sequences of length n avoiding the consecutive pattern 011.
Original entry on oeis.org
1, 1, 2, 5, 17, 75, 407, 2621, 19524, 165090, 1561900, 16345264, 187452475, 2337729329, 31497068553, 455930417721, 7056447326642, 116279714536838, 2032547040624336, 37563420959431569, 731810131489893185, 14989602024463575408, 322032777284323744894, 7240745954488939549295
Offset: 0
The a(4)=17 length 4 inversion sequences avoiding the consecutive pattern 011 are 0000, 0100, 0010, 0020, 0120, 0001, 0101, 0021, 0121, 0002, 0102, 0012, 0003, 0103, 0013, 0023, and 0123.
- Vaclav Kotesovec, Table of n, a(n) for n = 0..448
- Juan S. Auli, Pattern Avoidance in Inversion Sequences, Ph. D. thesis, Dartmouth College, ProQuest Dissertations Publishing (2020), 27964164.
- Juan S. Auli and Sergi Elizalde, Consecutive Patterns in Inversion Sequences, arXiv:1904.02694 [math.CO], 2019.
- Juan S. Auli and Sergi Elizalde, Consecutive patterns in inversion sequences II: avoiding patterns of relations, arXiv:1906.07365 [math.CO], 2019.
Cf.
A328357,
A328358,
A328429,
A328430,
A328431,
A328432,
A328433,
A328434,
A328435,
A328436,
A328437,
A328438,
A328440,
A328441,
A328442.
-
# after Alois P. Heinz in A328357
b := proc(n, x, t) option remember; `if`(n = 0, 1, add(
`if`(t and i < x, 0, b(n - 1, i, i = x)), i = 0 .. n - 1))
end proc:
a := n -> b(n, -1, false):
seq(a(n), n = 0 .. 24);
-
b[n_, x_, t_] := b[n, x, t] = If[n == 0, 1, Sum[If[t && i < x, 0, b[n - 1, i, i == x]], {i, 0, n - 1}]];
a[n_] := b[n, -1, False];
a /@ Range[0, 24] (* Jean-François Alcover, Mar 02 2020, after Alois P. Heinz in A328357 *)
A328438
Number of inversion sequences of length n avoiding the consecutive patterns 000 and 011.
Original entry on oeis.org
1, 1, 2, 4, 13, 57, 304, 1937, 14315, 120264, 1131896, 11794453, 134774963, 1675630582, 22516745452, 325188337067, 5022796990606, 82620491929333, 1441894214312037, 26609607869036180, 517741915593936360, 10592513721179374467, 227325651424365263577, 5106351205789851629476
Offset: 0
The a(4)=13 length 4 inversion sequences avoiding the consecutive patterns 000 and 011 are 0100, 0010, 0020, 0120, 0101, 0021, 0121, 0102, 0012, 0103, 0013, 0023, and 0123.
Cf.
A328357,
A328358,
A328429,
A328430,
A328431,
A328432,
A328433,
A328434,
A328435,
A328436,
A328437,
A328439,
A328440,
A328441,
A328442.
-
# after Alois P. Heinz in A328357
b := proc(n, x, t) option remember; `if`(n = 0, 1, add(
`if`(t and i <= x, 0, b(n - 1, i, i = x)), i = 0 .. n - 1))
end proc:
a := n -> b(n, -1, false):
seq(a(n), n = 0 .. 24);
-
b[n_, x_, t_] := b[n, x, t] = If[n == 0, 1, Sum[If[t && i <= x, 0, b[n - 1, i, i == x]], {i, 0, n - 1}]];
a[n_] := b[n, -1, False];
a /@ Range[0, 24] (* Jean-François Alcover, Mar 02 2020 after Alois P. Heinz in A328357 *)
A328437
Number of inversion sequences of length n avoiding the consecutive pattern 001.
Original entry on oeis.org
1, 1, 2, 4, 11, 42, 210, 1292, 9352, 77505, 722294, 7470003, 84854788, 1049924370, 14052654158, 202271440732, 3115338658280, 51118336314648, 890201500701303, 16397264064993185, 318505677099378561, 6506565509515408206, 139449260758011488550, 3128599281190613701180
Offset: 0
The a(4)=11 length 4 inversion sequences avoiding the consecutive pattern 001 are 0000, 0100, 0110, 0120, 0101, 0111, 0121, 0102, 0122, 0103, and 0123.
- Vaclav Kotesovec, Table of n, a(n) for n = 0..448
- Juan S. Auli, Pattern Avoidance in Inversion Sequences, Ph. D. thesis, Dartmouth College, ProQuest Dissertations Publishing (2020), 27964164.
- Juan S. Auli and Sergi Elizalde, Consecutive Patterns in Inversion Sequences, arXiv:1904.02694 [math.CO], 2019.
- Juan S. Auli and Sergi Elizalde, Consecutive patterns in inversion sequences II: avoiding patterns of relations, arXiv:1906.07365 [math.CO], 2019.
Cf.
A328357,
A328358,
A328429,
A328430,
A328431,
A328432,
A328433,
A328434,
A328435,
A328436,
A328438,
A328439,
A328440,
A328441,
A328442.
-
# after Alois P. Heinz in A328357
b := proc(n, x, t) option remember; `if`(n = 0, 1, add(
`if`(t and i = x, 0, b(n - 1, i, i < x)), i = 0 .. n - 1))
end proc:
a := n -> b(n, -1, false):
seq(a(n), n = 0 .. 24);
-
b[n_, x_, t_] := b[n, x, t] = If[n == 0, 1, Sum[If[t && i == x, 0, b[n - 1, i, i < x]], {i, 0, n - 1}]];
a[n_] := b[n, -1, False];
a /@ Range[0, 24] (* Jean-François Alcover, Mar 02 2020, after Alois P. Heinz in A328357 *)
Comments